Principle: Count function calls

For every function \(f :: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \tau \)
define a *timing function* \(t.f :: \tau_1 \Rightarrow ... \Rightarrow \tau_n \Rightarrow \text{nat} : \)

Translation of defining equations:

\[
\begin{align*}
 e & \leadsto e' \\
 f \, p_1 \ldots p_n = e & \leadsto t.f \, p_1 \ldots p_n = e' + 1
\end{align*}
\]
Principle: Count function calls

For every function \(f : \tau_1 \Rightarrow \ldots \Rightarrow \tau_n \Rightarrow \tau \)

define a **timing function** \(t.f : \tau_1 \Rightarrow \ldots \Rightarrow \tau_n \Rightarrow \text{nat} \):

Translation of defining equations:

\[
\begin{align*}
e & \rightsquigarrow e' \\
fp_1 \ldots p_n = e & \rightsquigarrow t.fp_1 \ldots p_n = e' + 1
\end{align*}
\]

Translation of expressions:

\[
\begin{align*}
s_1 & \rightsquigarrow t_1 \ldots s_k \rightsquigarrow t_k \\
gs_1 \ldots s_k & \rightsquigarrow t_1 + \cdots + t_k + t.gs_1 \ldots s_k
\end{align*}
\]

- Variable \(\rightsquigarrow 0 \), Constant \(\rightsquigarrow 0 \)
- Constructor calls and primitive operations on \(\text{bool} \) and numbers cost 1

Example

\[
\begin{align*}
\text{app} \ [\] \ ys & = ys
\end{align*}
\]
Example

\[\text{app} [] \ ys = ys \]
\[\leadsto \]
\[t_{\text{app}} [] \ ys = 0 + 1 \]

Example

\[\text{app} [] \ ys = ys \]
\[\leadsto \]
\[t_{\text{app}} [] \ ys = 0 + 1 \]
\[\text{app} (x\#xs) \ ys = x \# \ \text{app} \ xs \ ys \]

Example

\[\text{app} [] \ ys = ys \]
\[\leadsto \]
\[t_{\text{app}} [] \ ys = 0 + 1 \]
\[\text{app} (x\#xs) \ ys = x \# \ \text{app} \ xs \ ys \]
\[\leadsto \]
\[t_{\text{app}} (x\#xs) \ ys = 0 + (0 + 0 + t_{\text{app}} \ xs \ ys) + 1 + 1 \]

A compact formulation of

\[e \leadsto t \]

\[t \] is the sum of all \(t_{g_{s_1}} \ldots \ s_k \)
such that \(g_{s_1} \ldots s_n \) is a subterm of \(e \)
A compact formulation of
\[e \leadsto t \]

\(t \) is the sum of all \(t \cdot g \; s_1 \ldots s_k \)
such that \(g \; s_1 \ldots s_n \) is a subterm of \(e \)

If \(g \) is
 - a constructor or
 - a predefined function on \(\text{bool} \) or numbers
then \(t \cdot g \; s_1 \ldots s_n = 1 \).

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated \textit{lazily}.

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated \textit{lazily}.

Translation:

\[
\frac{b \leadsto t \quad s_1 \leadsto t_1 \quad s_2 \leadsto t_2}{\text{if } b \text{ then } s_1 \text{ else } s_2 \leadsto t + (\text{if } b \text{ then } t_1 \text{ else } t_2)}
\]
A compact formulation of

e \rightsquigarrow t

t is the sum of all \(t \cdot g \ s_1 \ldots \ s_k \)
such that \(g \ s_1 \ldots \ s_n \) is a subterm of \(e \)

If \(g \) is
- a constructor or
- a predefined function on \(\text{bool} \) or numbers

then \(t \cdot g \ldots = 1 \).

if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated **lazily**.

Translation:

\[
\frac{\begin{array}{l}
 b \rightsquigarrow t \\
 s_1 \rightsquigarrow t_1 \\
 s_2 \rightsquigarrow t_2
\end{array}}{\text{if } b \text{ then } s_1 \text{ else } s_2 \rightsquigarrow t + (\text{if } b \text{ then } t_1 \text{ else } t_2)}
\]

\(O(\cdot) \) is enough

\(O(\cdot) \) is enough

\(\implies \) Reduce all additive constants to 1

Example

\(t \text{ app } (x\#xs) \ ys = t \text{ app } xs \ ys + 1 \)
• The definition of $t.f$ from f can be automated.

• The correctness of $t.f$ could be proved w.r.t. a semantics that counts computation steps.

• The definition of $t.f$ from f can be automated.

• The correctness of $t.f$ could be proved w.r.t. a semantics that counts computation steps.

Discussion

• The definition of $t.f$ from f can be automated.

• The correctness of $t.f$ could be proved w.r.t. a semantics that counts computation steps.

• Precise complexity bounds (as opposed to $O(.)$) would require a formal model of (at least) the compiler and the hardware.

Thys/Sorting.thy

Insertion sort complexity
merge :: 'a list ⇒ 'a list ⇒ 'a list

merge [] ys = ys
merge xs [] = xs
merge (x # xs) (y # ys) =
 (if x ≤ y then x # merge xs (y # ys)
 else y # merge (x # xs) ys)

msort :: 'a list ⇒ 'a list

msort xs =
 (let n = length xs
 in if n ≤ 1 then xs
 else merge (msort (take (n div 2) xs))
 (msort (drop (n div 2) xs)))

Thys/Sorting.thy

Merge sort
Chapter 7
Binary Trees

HOL/Library/Tree.thy
Thys/Tree_Additions.thy

Binary trees

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Tree traversal

inorder :: 'a tree ⇒ 'a list
inorder () = []
inorder (l, x, r) = inorder l @ [x] @ inorder r

preorder :: 'a tree ⇒ 'a list
preorder () = []
preorder (l, x, r) = x # preorder l @ preorder r

postorder :: 'a tree ⇒ 'a list
postorder () = []
postorder (l, x, r) = postorder l @ postorder r @ [x]
size :: 'a tree ⇒ nat

|∅| = 0
|⟨⟨l, _, r⟩⟩| = |l| + |r| + 1

size1 :: 'a tree ⇒ nat

|t|₁ = |t| + 1

⇒

|∅|₁ = 1
|⟨⟨l, x, r⟩⟩|₁ = |t|₁ + |r|₁
\[\text{height} :: \text{'a tree} \Rightarrow \text{nat} \]
\[h(\langle \rangle) = 0 \]
\[h(\langle l, _, r \rangle) = \max(h(l)) \cdot (h(r)) + 1 \]

Warning: \(h(.) \) only on slides

\[\text{height} :: \text{'a tree} \Rightarrow \text{nat} \]
\[h(\langle \rangle) = 0 \]
\[h(\langle l, _, r \rangle) = \max(h(l)) \cdot (h(r)) + 1 \]

\[\text{height} :: \text{'a tree} \Rightarrow \text{nat} \]
\[h(\langle \rangle) = 0 \]
\[h(\langle l, _, r \rangle) = \max(h(l)) \cdot (h(r)) + 1 \]

Warning: \(h(.) \) only on slides

Lemma \(h(t) \leq |t| \)

Lemma \(|t|_1 \leq 2^{h(t)} \)
Minimal height

\[\text{min_height} :: 'a\ tree \Rightarrow \text{nat} \]
\[\text{mh}(\emptyset) = 0 \]
\[\text{mh}(\langle l, -, r \rangle) = \min (\text{mh}(l)) (\text{mh}(r)) + 1 \]

\[\text{min_height} :: 'a\ tree \Rightarrow \text{nat} \]
\[\text{mh}(\emptyset) = 0 \]
\[\text{mh}(\langle l, -, r \rangle) = \min (\text{mh}(l)) (\text{mh}(r)) + 1 \]

Warning: \text{mh}(.) only on slides

Internal path length

\[\text{ipl} :: 'a\ tree \Rightarrow \text{nat} \]
\[\text{ipl}\ \emptyset = 0 \]
\[\text{ipl}\ \langle l, -, r \rangle = \text{ipl}\ l + |l| + \text{ipl}\ r + |r| \]

\[\text{ipl} :: 'a\ tree \Rightarrow \text{nat} \]
\[\text{ipl}\ \emptyset = 0 \]
\[\text{ipl}\ \langle l, -, r \rangle = \text{ipl}\ l + |l| + \text{ipl}\ r + |r| \]

Why relevant?
Complete tree

\[\text{complete} :: 'a \text{ tree} \Rightarrow \text{ bool} \]

\[\text{complete} \langle \rangle = \text{True} \]
\[\text{complete} \langle l, _, r \rangle = \]
\[(\text{complete} \ l \land \text{complete} \ r \land h(l) = h(r)) \]

\textbf{Lemma} \text{complete} \ t = (mh(t) = h(t))
Complete tree

\[\text{complete :: } 'a \text{ tree } \Rightarrow \text{ bool} \]
\[\text{complete } \langle \rangle = \text{True} \]
\[\text{complete } \langle l, _, r \rangle = \]
\[(\text{complete } l \wedge \text{complete } r \wedge h(l) = h(r)) \]

Lemma \(\text{complete } t = (mh(t) = h(t)) \)

Lemma \(\text{complete } t \implies |t|_1 = 2^{h(t)} \)

Complete tree

\[\text{complete :: } 'a \text{ tree } \Rightarrow \text{ bool} \]
\[\text{complete } \langle \rangle = \text{True} \]
\[\text{complete } \langle l, _, r \rangle = \]
\[(\text{complete } l \wedge \text{complete } r \wedge h(l) = h(r)) \]

Lemma \(\text{complete } t = (mh(t) = h(t)) \)

Lemma \(\text{complete } t \implies |t|_1 = 2^{h(t)} \)

Lemma \(|t|_1 = 2^{h(t)} \implies \text{complete } t \)

Corollary \(\neg \text{complete } t \implies |t|_1 < 2^{h(t)} \)
Complete tree

\[\text{complete} :: \forall t. \text{tree} \Rightarrow \text{bool} \]
\[\text{complete} \; \langle \rangle = \text{True} \]
\[\text{complete} \; \langle l, _ , r \rangle = \]
\[(\text{complete} \; l \land \text{complete} \; r \land h(l) = h(r)) \]

Lemma \(\text{complete} \; t = (\text{mh} \; t = h(t)) \)

Lemma \(\text{complete} \; t \implies |t|_1 = 2^{h(t)} \)

Lemma \(|t|_1 = 2^{h(t)} \implies \text{complete} \; t \)

Lemma \(|t|_1 = 2^{\text{mh}(t)} \implies \text{complete} \; t \)

Corollary \(\neg \text{complete} \; t \implies |t|_1 < 2^{h(t)} \)

Corollary \(\neg \text{complete} \; t \implies 2^{\text{mh}(t)} < |t|_1 \)

Complete tree: \(ipl \)

Lemma A complete tree of height \(h \) has internal path length \((h - 2) \times 2^h + 2 \).

In a search tree, finding the node labelled \(x \) takes as many steps as the path from the root to \(x \) is long. Thus the average time to find an element that is in the tree is \(ipl \; t / |t| \).

Complete tree: \(ipl \)

Lemma A complete tree of height \(h \) has internal path length \((h - 2) \times 2^h + 2 \).

In a search tree, finding the node labelled \(x \) takes as many steps as the path from the root to \(x \) is long. Thus the average time to find an element that is in the tree is \(ipl \; t / |t| \).

Lemma Let \(t \) be a complete search tree of height \(h \).
Complete tree: \(ipl \)

Lemma A complete tree of height \(h \) has internal path length \((h - 2) * 2^h + 2 \).

In a search tree, finding the node labelled \(x \) takes as many steps as the path from the root to \(x \) is long. Thus the average time to find an element that is in the tree is \(ipl \ t / |t| \).

Lemma Let \(t \) be a complete search tree of height \(h \). The average time to find a random element that is in the tree is asymptotically \(h - 2 \) (as \(h \) approaches \(\infty \)):

\[
\frac{ipl \ t}{|t|} \sim h - 2
\]

A problem: \((h - 2) * 2^h + 2 \) is only correct if interpreted over type \(int \), not \(nat \).

Correct version:

Lemma \(complete \ t \Rightarrow \)

\[
int (ipl \ t) = (int (h(t)) - 2) * 2^{h(t)} + 2
\]
Balanced tree

\[\text{balanced} :: 'a \text{ tree} \Rightarrow \text{bool} \]

\[\text{balanced } t = (h(t) - mh(t) \leq 1) \]

Balanced trees have optimal height:

Lemma If \(\text{balanced } t \wedge |t| \leq |t'| \) then \(h(t) \leq h(t') \).

Balanced tree

Balanced tree

Warning

- The terms *complete* and *balanced* are not defined uniquely in the literature.
Chapter 8

Search Trees

Most of the material focuses on

BSTs = binary search trees

BSTs represent sets

Any tree represents a set:

\[
set_tree :: \text{'a tree} \Rightarrow \text{'a set} \\
set_tree \emptyset = \emptyset \\
set_tree \langle l, x, r \rangle = set_tree l \cup \{x\} \cup set_tree r
\]

A BST represents a set that can be searched in time \(O(h(t))\)
BSTs represent sets

Any tree represents a set:

\[\text{set_tree} :: 'a \text{ \textit{tree}} \Rightarrow 'a \text{ \textit{set}} \]

\[\text{set_tree} \; \emptyset = \emptyset \]

\[\text{set_tree} \; \langle l, \; x, \; r \rangle = \text{set_tree} \; l \cup \{x\} \cup \text{set_tree} \; r \]

A BST represents a set that can be searched in time \(O(h(t)) \)

Function \(\text{set_tree} \) is called an \textit{abstraction function}

because it maps the implementation
to the abstract mathematical object

\[\begin{align*}
\text{bst} & :: 'a \text{ \textit{tree}} \Rightarrow \text{bool} \\
\text{bst} \; \emptyset & = \text{True} \\
\text{bst} \; \langle l, \; a, \; r \rangle & = \\
& (\text{bst} \; l \land \text{bst} \; r \land \\
& (\forall x \in \text{set_tree} \; l. \; x < a) \land \\
& (\forall x \in \text{set_tree} \; r. \; a < x))
\end{align*} \]

Type \('a \) must be in class \textit{linorder} \(('a :: \text{linorder}) \) where

\textit{linorder} are \textit{linear orders} (also called \textit{total orders}).

Note: \textit{nat}, \textit{int} and \textit{real} are in class \textit{linorder}
Set interface

An implementation of sets of elements of type 'a must provide
- An implementation type 's
- empty :: 's
- insert :: 'a => 's => 's
- delete :: 'a => 's => 's
- isin :: 's => 'a => bool

Map interface

Instead of a set, a search tree can also implement a map from 'a to 'b:
Map interface

Instead of a set, a search tree can also implement a map from \(a \) to \(b \):

- An implementation type \(m \)
- \(\text{empty} :: m \)
- \(\text{update} :: a \Rightarrow b \Rightarrow m \Rightarrow m \)

Map interface

Instead of a set, a search tree can also implement a map from \(a \) to \(b \):

- An implementation type \(m \)
- \(\text{empty} :: m \)
- \(\text{update} :: a \Rightarrow b \Rightarrow m \Rightarrow m \)
- \(\text{delete} :: a \Rightarrow m \Rightarrow m \)
- \(\text{lookup} :: m \Rightarrow a \Rightarrow b \text{ option} \)

Map interface

Instead of a set, a search tree can also implement a map from \(a \) to \(b \):

- An implementation type \(m \)
- \(\text{empty} :: m \)
- \(\text{update} :: a \Rightarrow b \Rightarrow m \Rightarrow m \)
- \(\text{delete} :: a \Rightarrow m \Rightarrow m \)
- \(\text{lookup} :: m \Rightarrow a \Rightarrow b \text{ option} \)

Sets are a special case of maps

Comparison of elements

We assume that the element type \(a \) is a linear order.

Instead of using \(< \) and \(\leq \) directly:

datatype *cmp_val* = \(LT \mid EQ \mid GT \)

\(cmp \ x \ y = \)

(if \(x < y \) then \(LT \) else if \(x = y \) then \(EQ \) else \(GT \))
Implementation

Implementation type: 'a tree

empty = Leaf

insert x '() = ('(), x, '())
insert x 'l, a, r' = (case cmp x a of
 LT ⇒ (insert x l, a, r)
 | EQ ⇒ ('l, a, r)
 | GT ⇒ ('l, a, insert x r))

Implementation

delete x '() = '()
delete x 'l, a, r' =
 (case cmp x a of
 LT ⇒ (delete x l, a, r)
 | EQ ⇒ if r = '() then 'l
 else let (a', r') = del_min r in ('l, a', r')
 | GT ⇒ ('l, a, delete x r'))

del_min 'l, a, r' =
 (if l = '() then (a, r)
 else let (x, l') = del_min l in (x, (l', a, r)))
Why is this implementation correct?

Because empty insert delete isin
simulate \{\} \cup \{.\} - \{.\} \in

\text{set_tree empty} = \{\}

Why is this implementation correct?

Because empty insert delete isin
simulate \{\} \cup \{.\} - \{.\} \in

\text{set_tree empty} = \{\}
\text{set_tree (insert x t)} = \text{set_tree t} \cup \{x\}
Why is this implementation correct?

Because \(\text{empty} \quad \text{insert} \quad \text{delete} \quad \text{isin} \)
simulate \(\{ \} \quad \cup \{.\} - \{.\} \in \)

\[
\begin{align*}
\text{set_tree empty} &= \{\} \\
\text{set_tree (insert } x \text{ t)} &= \text{set_tree t} \cup \{x\} \\
\text{set_tree (delete } x \text{ t)} &= \text{set_tree t} - \{x\}
\end{align*}
\]

Why is this implementation correct?

Because \(\text{empty} \quad \text{insert} \quad \text{delete} \quad \text{isin} \)
simulate \(\{\} \quad \cup \{.\} - \{.\} \in \)

\[
\begin{align*}
\text{set_tree empty} &= \{\} \\
\text{set_tree (insert } x \text{ t)} &= \text{set_tree t} \cup \{x\} \\
\text{set_tree (delete } x \text{ t)} &= \text{set_tree t} - \{x\} \\
\text{isin } t \ x &= (x \in \text{set_tree } t)
\end{align*}
\]

Also: \(\text{bst must be invariant} \)

\[
\begin{align*}
\text{bst empty} \\
\text{bst } t &\implies \text{bst (insert } x \text{ t)} \\
\text{bst } t &\implies \text{bst (delete } x \text{ t)}
\end{align*}
\]

Under the assumption \(\text{bst } t \)
Also: \(\text{bst} \) must be invariant

\[
\begin{align*}
\text{bst \ empty} \\
\text{bst } t \implies \text{bst } (\text{insert } x \ t) \\
\text{bst } t \implies \text{bst } (\text{delete } x \ t)
\end{align*}
\]

Why is this implementation correct?

Because \(\text{empty, insert, delete, isin} \)
simulate \(\emptyset \cup \{.\} - \{.\} \in \)

\[
\begin{align*}
\text{set}_\text{tree } \text{empty} &= \emptyset \\
\text{set}_\text{tree } (\text{insert } x \ t) &= \text{set}_\text{tree } t \cup \{x\} \\
\text{set}_\text{tree } (\text{delete } x \ t) &= \text{set}_\text{tree } t - \{x\} \\
\text{isin } t &\ x = (x \in \text{set}_\text{tree } t)
\end{align*}
\]

Under the assumption