Title: FDS (28.04.2017)
Date: Fri Apr 28 08:29:57 CEST 2017
Duration: 92:30 min
Pages: 109

Functional Data Structures
with Isabelle/HOL

Tobias Nipkow
Fakultät für Informatik
Technische Universität München

2017-4-28
What the course is about

Data Structures and Algorithms for Functional Programming Languages

The code is not enough!

Formal Correctness and Complexity Proofs with the Proof Assistant Isabelle

Proof Assistants

- You give the structure of the proof
- The PA checks the correctness of each step

Terminology

Formal = machine-checked
Verification = formal correctness proof

Two landmark verifications

C compiler
Two landmark verifications

C compiler
Competitive with gcc -01

Xavier Leroy
INRIA Paris
using Coq

Operating system
microkernel (L4)

Xavier Leroy
INRIA Paris
using Coq

Gerwin Klein (& Co)
NICTA Sydney
using Isabelle

Overview of course

- Week 1–5: Introduction to Isabelle
- Rest of semester: Search trees, priority queues, etc and their (amortized) complexity

What we expect from you

Functional programming experience with an ML/Haskell-like language
What we expect from you

Functional programming experience with an ML/Haskell-like language
First course in data structures and algorithms

You will not survive this course without doing the time-consuming homework
Quiz

Which of the following formulas have the same meaning?

1. \(A \implies (B \implies C) \)
2. \((A \implies B) \implies C\)
3. \((A \land B) \implies C\)

Notation

Implication associates to the right:

\[
A \implies B \implies C \quad \text{means} \quad A \implies (B \implies C)
\]

Similarly for other arrows: \(\Rightarrow, \implies\)

\[
\frac{A_1 \quad \ldots \quad A_n}{B} \quad \text{means} \quad A_1 \implies \ldots \implies A_n \implies B
\]

Notation

Implication associates to the right:

\[
A \implies B \implies C \quad \text{means} \quad A \implies (B \implies C)
\]

1. Overview of Isabelle/HOL
2. Type and function definitions
3. Induction Heuristics
4. Simplification
HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
- For the moment: only $term = term$
HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
- datatypes
- recursive functions
- logical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
- For the moment: only $term = term$,
 e.g. $1 + 2 = 4$
- Later: $\land, \lor, \rightarrow, \forall, \ldots$

Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Numeric Types
Summary

Types

Basic syntax:

$$\tau ::= (\tau) \quad | \quad bool \quad | \quad nat \quad | \quad int \quad | \ldots$$

Base types

Types

Basic syntax:

$$\tau ::= (\tau) \quad | \quad bool \quad | \quad nat \quad | \quad int \quad | \ldots$$

Base types

$$\tau ::= 'a \quad | \quad 'b \quad | \ldots$$

Type variables
Types

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Types

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Types

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Types

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]

Basic syntax:

\[\tau ::= (\tau) \mid \text{base types} \]
\[\mid \text{type variables} \]
\[\mid \text{functions} \]
\[\mid \tau \Rightarrow \tau \mid \tau \times \tau \]
Types

Basic syntax:

\[\begin{align*}
\tau & ::= (\tau) \\
& | \text{bool} | \text{nat} | \text{int} | \ldots \\
& | 'a | 'b | \ldots \\
& | \tau \Rightarrow \tau \\
& | \tau \times \tau \\
& | \tau \text{ list} \\
& | \tau \text{ set} \\
& | \ldots \\
\end{align*} \]

base types

type variables

functions

pairs (ascii: \(*\))

lists

sets

user-defined types

Terms

Basic syntax:

\[\begin{align*}
t & ::= (t) \\
& | a \\
& | tt \\
& | \lambda x. t \\
& | \ldots \\
\end{align*} \]

constant or variable (identifier)

function application

function abstraction

lots of syntactic sugar

Terms

Basic syntax:

\[\begin{align*}
t & ::= (t) \\
& | a \\
& | tt \\
& | \lambda x. t \\
& | \ldots \\
\end{align*} \]

constant or variable (identifier)

function application

function abstraction

lots of syntactic sugar

\[\lambda \text{-calculus} \]
Terms must be well-typed
(the argument of every function call must be of the right type)

Notation:
\(t :: \tau \) means “\(t \) is a well-typed term of type \(\tau \)”.

\[
\frac{t :: \tau_1 \Rightarrow \tau_2 \quad u :: \tau_1}{t \ u :: \tau_2}
\]

Type inference

Isabelle automatically computes the type of each variable in a term.

In the presence of overloaded functions (functions with multiple types) this is not always possible.
Type inference

Isabelle automatically computes the type of each variable in a term. This is called *type inference*.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

User can help with *type annotations* inside the term. Example: \(f (x :: \text{nat}) \)

Currying

Thou shalt Curry your functions

- Curried: \(f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau \)
- Tupled: \(f' :: \tau_1 \times \tau_2 \Rightarrow \tau \)

Predefined syntactic sugar

- *Infix*: \(+, -, *, #, @, \ldots\)

Predefined syntactic sugar

- *Infix*: \(+, -, *, #, @, \ldots\)
- *Mixfix*: \(\text{if then else case of} \)
Predefined syntactic sugar

- Infix: +, −, *, #, @, ...
- Mixfix: if – then – else –, case – of, ...

Prefix binds more strongly than infix:

\[f \ x + y \equiv (f \ x) + y \neq f (x + y) \]

Enclose if and case in parentheses:

\[(if \ then \ else) \]
Theory = Isabelle Module

Syntax: theory MyTh
 imports T_1 ... T_n
 begin
 (definitions, theorems, proofs, ...)*
 end

MyTh: name of theory. Must live in file *MyTh.thy*
T_i: names of imported theories. Import transitive.

Usually: imports Main

Concrete syntax

In *.thy* files:
Types, terms and formulas need to be inclosed in "

Syntax: theory MyTh
 imports T_1 ... T_n
 begin
 (definitions, theorems, proofs, ...)*
 end
Theory = Isabelle Module

Syntax: theory MyTh
 imports T_1 ... T_n
 begin
 (definitions, theorems, proofs, ...)*
 end

MyTh: name of theory. Must live in file MyTh.thy

T_i: names of imported theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers
"

normally not shown on slides

isabelle jedit

- Based on jEdit editor
- Processes Isabelle text automatically when editing .thy files

Overview_Demo.thy
Overview_Demo.thy

\textbf{Type bool}

\texttt{datatype bool = True | False}

\textbf{Type bool}

\texttt{datatype bool = True | False}

Predefined functions:
\(\land, \lor, \rightarrow, \ldots \:: \text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool}\)

Predefined functions:
\(\land, \lor, \rightarrow, \ldots \:: \text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool}\)

\textit{A formula is a term of type bool}
Type bool

\[
datatype \text{ bool } = \text{ True } | \text{ False }
\]

Predefined functions:
\[\land, \lor, \rightarrow, \ldots : \text{ bool } \Rightarrow \text{ bool } \Rightarrow \text{ bool } \]

A formula is a term of type bool

if-and-only-if: =

Type nat

\[
datatype \text{ nat } = 0 | \text{ Suc nat }
\]

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Type nat

\[
datatype \text{ nat } = 0 | \text{ Suc nat }
\]

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: +, *, ... : nat \Rightarrow nat \Rightarrow nat
Type nat

```
datatype nat = 0 | Suc nat
```

Values of type `nat`: `0`, `Suc 0`, `Suc(Suc 0)`, ...

Predefined functions: `+`, `*`, ..., :: `nat ⇒ nat ⇒ nat`

⚠️ Numbers and arithmetic operations are overloaded:
 `0,1,2,... :: 'a`, `+ :: 'a ⇒ 'a ⇒ 'a`

You need type annotations: `1 :: nat`, `x + (y::nat)`

```
datatype nat = 0 | Suc nat
```

Values of type `nat`: `0`, `Suc 0`, `Suc(Suc 0)`, ...

Predefined functions: `+`, `*`, ..., :: `nat ⇒ nat ⇒ nat`

⚠️ Numbers and arithmetic operations are overloaded:
 `0,1,2,... :: 'a`, `+ :: 'a ⇒ 'a ⇒ 'a`

You need type annotations: `1 :: nat`, `x + (y::nat)`
An informal proof

Lemma $\text{add } m \ 0 = m$

Proof by induction on m.

- Case 0 (the base case):
 $\text{add } 0 \ 0 = 0$ holds by definition of add.

- Case $\text{Suc } m$ (the induction step):
 We assume $\text{add } m \ 0 = m$,
 the induction hypothesis (IH).
 We need to show $\text{add } (\text{Suc } m) \ 0 = \text{Suc } m$.
 The proof is as follows:
 $\text{add } (\text{Suc } m) \ 0 = \text{Suc } (\text{add } m \ 0)$ by def. of add.
Type `'a list

Lists of elements of type `'a

```
datatype `'a list = Nil | Cons `'a (a list)
```

Some lists: `Nil,
Type 'a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
- [] = Nil: empty list
- x # xs = Cons x xs: list with first element x ("head") and rest xs ("tail")
- [x₁, ..., xₙ] = x₁ # ... # xₙ ≠ []

Structural Induction for lists

To prove that \(P(xs) \) for all lists \(xs \), prove
- \(P([]) \) and
- for arbitrary but fixed \(x \) and \(xs \), \(P(xs) \) implies \(P(x#xs) \).

\[
\begin{align*}
P([]) & \quad \land x. \ P(xs) \Rightarrow P(x#xs) \\
P(xs) \end{align*}
\]
List_Demo.thy

Included in Main.

Don't reinvent, reuse!

1 Overview of Isabelle/HOL
 Types and terms
 Interface
 By example: types bool, nat and list
 Numeric Types
 Summary

Numeric types: nat, int, real

Need conversion functions (inclusions):

\[
\begin{align*}
\text{int} & : \text{nat} \Rightarrow \text{int} \\
\text{real} & : \text{nat} \Rightarrow \text{real} \\
\text{real_of_int} & : \text{int} \Rightarrow \text{real}
\end{align*}
\]
Numeric types: \textit{nat}, \textit{int}, \textit{real}

Need conversion functions (inclusions):

\begin{itemize}
 \item \texttt{int} :: \textit{nat} \Rightarrow \textit{int}
 \item \texttt{real} :: \textit{nat} \Rightarrow \textit{real}
 \item \texttt{real_of_int} :: \textit{int} \Rightarrow \textit{real}
\end{itemize}

If you need type \textit{real},
import theory \textit{Complex_Main} instead of \textit{Main}

Isabelle inserts conversion functions automatically

\begin{itemize}
 \item (with theory \textit{Complex_Main})
 \item If there are multiple correct completions,
 \item Isabelle chooses an \textit{arbitrary} one
\end{itemize}
Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(with theory Complex_Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples

\[(i::int) + (n::nat) \sim i + \text{int } n\]

\[(n::nat) + n) :: \text{real} \sim \text{real}(n+n), \text{real } n + \text{real } n\]
Numeric types: \(nat, int, real \)

Coercion in the other direction:

\[nat :: int \Rightarrow nat \]

Overloaded arithmetic operations

- Basic arithmetic functions are overloaded:
 \[+, -, \cdot :: 'a \Rightarrow 'a \Rightarrow 'a \]
 \[- :: 'a \Rightarrow 'a \]
- Division on \(nat \) and \(int \):
 \[\text{div}, \text{mod} :: 'a \Rightarrow 'a \Rightarrow 'a \]
- Division on \(real \):
 \[/ :: 'a \Rightarrow 'a \Rightarrow 'a \]

Overloaded arithmetic operations

- Basic arithmetic functions are overloaded:
 \[+, -, \cdot :: 'a \Rightarrow 'a \Rightarrow 'a \]
 \[- :: 'a \Rightarrow 'a \]
- Division on \(nat \) and \(int \):
 \[\text{div}, \text{mod} :: 'a \Rightarrow 'a \Rightarrow 'a \]
- Division on \(real \):
 \[/ :: 'a \Rightarrow 'a \Rightarrow 'a \]
- Exponentiation with \(nat \):
 \[^ :: 'a \Rightarrow nat \Rightarrow 'a \]
Overloaded arithmetic operations

- Basic arithmetic functions are overloaded:

 \[
 +, -, *, :: 'a \Rightarrow 'a \Rightarrow 'a

 - :: 'a \Rightarrow 'a
 \]

- Division on \textit{nat} and \textit{int}:

 \[
 \text{div, mod} :: 'a \Rightarrow 'a \Rightarrow 'a
 \]

- Division on \textit{real}:

 \[
 / :: 'a \Rightarrow 'a \Rightarrow 'a
 \]

- Exponentiation with \textit{nat}:

 \[
 ^ :: 'a \Rightarrow \text{nat} \Rightarrow 'a
 \]

- Exponentiation with \textit{real}:

 \[
 \text{powr} :: 'a \Rightarrow 'a \Rightarrow 'a
 \]

- Absolute value:

 \[
 \text{abs} :: 'a \Rightarrow 'a
 \]

Overview of Isabelle/HOL

Types and terms

Interface

By example: types \textit{bool}, \textit{nat} and \textit{list}

Numeric Types

Summary

- \textbf{datatype} defines (possibly) recursive data types.

- \textbf{fun} defines (possibly) recursive functions by pattern-matching over \textbf{datatype} constructors.
Proof methods

- \textit{induction} performs structural induction on some variable (if the type of the variable is a datatype).

- \textit{auto} solves as many subgoals as it can, mainly by simplification (symbolic evaluation):

\begin{quote}
\texttt{``=`` is used only from left to right!}
\end{quote}

Proofs

General schema:

\begin{verbatim}
lemma name: "..."
apply (...) apply (...)
:
done
\end{verbatim}
Proofs

General schema:

\textbf{lemma} \textit{name}: "..."
apply (...) apply (...):
done

If the lemma is suitable as a simplification rule:
\textbf{lemma} \textit{name}[simp]: "..."

Top down proofs

Command

\textbf{sorry}

"completes" any proof.

The proof state

1. \(\bigwedge x_1 \ldots x_n. \quad A \Rightarrow B \)

Multiple assumptions

\([A_1; \ldots ; A_n] \Rightarrow B \)

abbreviates

\(A_1 \Rightarrow \ldots \Rightarrow A_n \Rightarrow B \)
Multiple assumptions

\[[A_1; \ldots ; A_n] \implies B \]

abbreviates

\[A_1 \implies \ldots \implies A_n \implies B \]

; \approx \text{“and”}

1. Overview of Isabelle/HOL
2. Type and function definitions
3. Induction Heuristics
4. Simplification