Script generated by TTT

Title: Distributed_Applications (16.06.2014)

Mon Jun 16 09:19:20 CEST 2014 Date:

Duration: 45:02 min

Pages: 15

Authentication service Kerberos

Definition: Authentication means verifying the identities of the communicating partners to one another in a secure manner.

Kerberos has been developed at the MIT as part of the distributed framework Athena. Kerberos ist part of a variety authentication components. The Kerberos authentication protocol is based on the protocol by Needham and Schröder.

Introduction

This course provides only a short introduction to Kerberos (for further information, consult the Kerberos Web-Site

Motivation

Security objects of Kerberos

Authentication process scenario

Generated by Targeteam

Motivation

Kerberos assumes the following components

Client C.

Server S.

Key distribution center KDC, and

Ticket granting service TGS.

Goal of Kerberos

A client & requests the service of the server S. KDC and TGS are supposed to guarantee the secrecy and authenticity requirements.

- 1. KDC manages the secret keys of the registered components.
- 2. Within a session TGS provides the client C with tickets for authentication with servers of the distributed system.

Generated by Targeteam

Description of exchanged messages

Problems with Kerberos

Manipulation of local computer clocks to circumvent the validity time of tickets

i.e. synchronization of clocks in distributed systems must be authorized and authenticated.

Example: user login with Kerberos

Generated by Targeteam

Example: user login with Kerberos

- 2. if the user is known, then KDC sends a session key K_N encrypted with the user password, as well as a TGS ticket.
- 3. login program requests the password from the user and decrypts the session key K_N using the password; if the password was correct, then the decrypted session key K_N and the session key K_N within the TGS ticket are identical.
- 4. the password can be removed from the main memory because for further communication, only K_N and the TGS ticket are used; both are used to authenticate the user at TGS if the user requests a server S.
- 5. establish a user login session on workstation W.

Generated by Targeteam

Message 2: KDC to C

Message 3: C to TGS

Message 4: TGS to C

Message 5: C to S

Message 6: S to C

Generated by Targeteam

Authentication process scenario

Description of exchanged messages

Problems with Kerberos

Manipulation of local computer clocks to circumvent the validity time of tickets

i.e. synchronization of clocks in distributed systems must be authorized and authenticated.

Example: user login with Kerberos

Web services provide a standard means of communication among distributed software applications based on the Web technology. Standardization by the W3C community.

Motivation - Example

Service Oriented Architecture - SOA

Web Services - Characteristics

Web Services Architecture

Simple Object Access Protocol (SOAP)

Web Services Description Language (WSDL)

Universal Description, Discovery, and Integration (UDDI)

REST

Web Service Composition

Adopting Web Services

<u>Mashu</u>⊮s

Generated by Targeteam

Today, we normally use Web browsers to interact with Web sites

browser names document via URL

request and reply messages encoded in HTML, using HTTP as communication protocol

Web Services generalize this model so that computers can talk to other computers.

Use of Web Services in a distributed travel arrangement application

Generated by Targeteam

Web Services

Web services provide a standard means of communication among distributed software applications based on the Web technology. Standardization by the W3C community.

Motivation - Example

Service Oriented Architecture - SOA

Web Services - Characteristics

Web Services Architecture

Simple Object Access Protocol (SOAP)

Web Services Description Language (WSDL)

Universal Description, Discovery, and Integration (UDDI)

REST

Web Service Composition

Adopting Web Services

Mashups

Characteristics

service is a well defined, self contained function

does not depend on context or state of other services

provider

manages its own data

coarse granularity

requestor

communication between services

for data passing and for coordinating activities

focus is on the design of service interface

SOA vs. Component based Architecture

SOA vs. Component based Architecture

Layered Approach

SOA differs from today's component-based architectures in the following respects:

component-based	SOA
tight integration	loose horizontal integration
code-oriented development	process-oriented development
technical complexity of the IT infrastructure	interoperable architecture for business and IT
build to last	build to change

Generated by Targeteam

Focus is on business processes of enterprises:

Mapping of business processes to services

Generated by Targeteam

Adopting Service Oriented Architecture (SOA)

Service Oriented Architecture - SOA

The adoption within organizations depends on a variety of issues:

Supporting Issues

interoperable networked applications

easier exchange of distributed data

easier access of enterprise wide data

availability of external services

cross-organizational computing

reduced maintenance cost

small effects on existing operational systems

Restraining Issues

different formats and semantics of data sources

security issues due to network access

The Enterprise Services Bus (ESB) refers to both a software architecture and and class of software products used for the realization of SOA.

messaging middleware that provides interoperability between enterprise applications via XML, Web Services interfaces and standardized rule-based routing of documents.

Mule is an Open Source ESB.

SOA evolved from component-based architectures. SOA is a collection services with a loose coupling and dynamic binding between services

Characteristics

Layered Approach

Adopting Service Oriented Architecture (SOA)

web services are an approach of building a SOA based on Web technologies encapsulation of application components in web services

Generated by Targeteam