Title: Distributed_Applications (19.05.2014)

Date: Mon May 19 09:18:13 CEST 2014

Duration: 45:07 min

Pages: 15

Servlets

Servlets (Java Servlets) are programs invoked by a client and executed on the server host:

- used to extend the functionality of the server.

Servlet Properties

Servlet Lifecycle

HttpServlet Interface

Structure of a Servlet

Execution of a servlet in the context provided by the servlet engine.

Apache Tomcat: free, open-source implementation of Java servlet technology.

Methods specified within each servlet object and invoked by the servlet engine:

- init: when a servlet is initialized.
- shutdown: when a servlet is no longer needed.
- service: when a client request is forwarded to the servlet.

Servlets are invoked via HTTP requests (GET or POST method), e.g.

```html
<form method="post"
action="http://myhost:8080/servlet/formServlet">
.... arguments of the form ....
</form>
```
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class CurrentTime extends HttpServlet {
 /* process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<p>The current time is " + new java.util.Date());
 out.close(); // close stream
 }
}

Invocation
http://localhost:8080/.../servlet/CurrentTime
Issues
The following section discusses several important basic issues of distributed applications.
Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?
What are the characteristics of distributed transactions?
What are the basic aspects of group communication (e.g. algorithms used by ISIS)?
How are messages propagated and delivered within a process group in order to maintain a consistent state?

External data representation

Time

Distributed execution model

Failure handling in distributed applications

Distributed transactions

Group communication

Distributed Consensus

Authentication service Kerberos

Marshalling and unmarshalling

Heterogeneous environment means different data representations

Indepedence from hardware characteristics while exchanging messages means: use of external data representation.

Marshalling and unmarshalling

Centralized transformation

Decentralized transformation

Common external data representation

XML as common data representation

Java Object Serialization

client

marshaling of arguments

unmarshaling of arguments

server

data stream across the network

marshal: parameter serialization to a data stream.

unmarshal: data stream extraction and reassembly of arguments.

software for argument transformation either provided by RPC system or as plugin by the application programmer.
Decentralized transformation

All nodes execute data transformations.

Variants

A transforms data which are then sent to B; B transforms data which are then sent to A.
A transforms data by B; B transforms data by A.
A and B transform data in a network-wide standard format; the respective recipients retransform the received data into the local format.

If new system components are dynamically added to the distributed system, the new system components simply have to "learn" about the network-wide unique standard representation.

No special hardware is required.

Example: XDR as part of ONC by Sun.

Common external data representation

Two aspects of a common external data representation are of importance:

- a machine-independent format for data representation, and
- a language for description of complex data structures.

Examples: XDR ("eXternal Data Representation") by Sun and ASN.1 (Abstract Syntax Notation). Other formats are

- Corbys common data representation: structured and primitive types can be passed as arguments and results.
- Java's object serialization: flattening of single objects or tree of objects.

Representation of numbers

External representation of strings

External representation of arrays

Transfer of pointers

Representation of numbers

For the representation of numbers in main memory, one of the following methods are generally used:

- "little endian" representation: the lower part of a number is stored in the lower memory area.
- "big endian" representation: the higher part of a number is stored in the lower memory area, e.g. the Sun-Sparc architecture.

Example representation of the number 1347

<table>
<thead>
<tr>
<th>Memory Address</th>
<th>1000</th>
<th>1001</th>
<th>1002</th>
<th>1003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Endian</td>
<td>00000000</td>
<td>00000000</td>
<td>00000101</td>
<td>01000011</td>
</tr>
<tr>
<td>Little Endian</td>
<td>01000011</td>
<td>00000101</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Convention for network transfer, numbers which encompass several bytes are structured according to a well-defined representation, such as "big endian".