Introduction

Group communication facilitates the interaction between groups of processes.

Motivation

Important issues

Conventional approaches

Groups of components

Management of groups

Message dissemination

Message delivery

Taxonomy of multicast

Group communication in ISIF

JGroups
JGroups

management of group membership.

Programming Interface of JGroups

groups are identified via channels:

```
channel.connect("MyGroup");
```

a channel is connected to a protocol stack specifying its properties.

```
application
```

network

```
Sequencer
```

Total ordering of messages using a coordinator

```
GMS
```

group membership layer

```
Frag
```

fragmentation layer

```
UDP
```

protocol stack

Code Example

```
String props = "UDP.Frag.GMS:causal";
Message send_msg;
Object recv_msg;
Channel channel = new JChannel(props);
channel.connect("MyGroup");
send_msg = new Message(null, null, "hello World");
channel.send(send_msg);
recv_msg = (Message) channel.recv(0);
System.out.println("Received " + recv_msg);
channel.disconnect();
channel.close();
```

Distributed Consensus

problem of distributed processes to agree on a value; processes communicate by message passing.

Examples

all correct computers controlling a spaceship should decide to proceed with landing, or all of them should decide to abort (after each has proposed one action or the other)

in an electronic money transfer transaction, all involved processes must consistently agree on whether to perform the transaction (debit and credit), or not

desirable: reaching consensus even in the presence of faults

assumption: communication is reliable, but processes may fail

Consensus Problem

Consensus in synchronous Networks
Consensus Problem

agreement on the value of a decision variable amongst all correct processes
p, is in state undecided and proposes a single value v_i, drawn from a set of values.
next, processes communicate with each other to exchange values.
in doing so, p sets decision variable d_i and enters the decided state after which the value of d_i remains unchanged.

Properties
Algorithm
The Byzantine Generals Problem
Interactive Consistency Problem
Relationship between these Problems

The following conditions should hold for every execution of the algorithm:

termination: eventually, each correct process sets its decision variable
agreement: the decision variable of all correct processes is the same in the decided state.
integrity: if the correct processes all proposed the same value, then any correct process has chosen that value in the decided state.

Consensus Problem

three or more generals are to agree to attack or to retreat.
one general, the commander issues order
others (lieutenants to the commander) have to decide to attack or retreat
one of the generals may be treacherous
if commander is treacherous, it proposes attacking to one general and retreating to the other
if lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and others that commander ordered to retreat

difference to consensus problem: one process supplies a value that others have to agree on
The Byzantine Generals Problem

If the commanders are treacherous, they tell one of their peers that the commander ordered to attack, and others that the commander ordered to retreat.

difference to consensus problem: one process supplies a value that others have to agree on properties:
- termination: eventually each correct process sets its decision variable.
- agreement: the decision value of all correct processes is the same.
- integrity: if the commander is correct, then all processes decide on the value that the commander proposes.

Interactive Consistency Problem

Each process suggests a single value.

goal: all correct processes agree on a vector of values ("decision vector"); each component correspond to one process's agreed value

example: agreement about each processes' local state.

properties:
- termination: eventually each correct process sets its decision vector.
- agreement: the decision vector of all correct processes is the same.
- integrity: if p_i is correct, then all correct processes decide on v_i as the i-th component of their vector.

Relationship between these Problems

Assume that the previous problems could be solved, yielding the following decision variables

Consensus: C_i(v_1, ..., v_n) returns the decision value of process p_i

Byzantine Generals: BG_i(k, v) returns the decision value of process p_i, where p_i is the commander which proposes the value v

Interactive Consistency: IC_i(v_1, ..., v_n)[k] returns the k-th value in the decision vector of process p_i, where v_1, ..., v_n are the values that the processes proposed

Possibilities to derive solutions out of the solutions to other problems

solution to IC from BG
- run BG n times, once with each p_i acting as commander
- C_i(v_1, ..., v_n)[k] = BG_i(k, v_k) with (i, k = 1, ..., n)

solution to C from IC
- run IC to produce a vector of values at each process
- apply an appropriate function on the vector's values to derive a single value
- C_i(v_1, ..., v_n) = majority(IC_i(v_1, ..., v_n)[1], ..., IC_i(v_1, ..., v_n)[n])

solution to BG from C
- commander p_i sends its proposed value v to itself and each of the remaining processes
- all processes run C with the values v_1, ..., v_n that they receive
- derive BG_i(k, v) = C_i(v_1, ..., v_n) with i = 1, ..., n

termination, agreement and integrity preserved in each case.
Assumption: no more than f of the n processes crash (f < n).

The algorithm proceeds in f+1 rounds in order to reach consensus.

- At the end of f+1 rounds, all surviving processes are in a position to agree.

Algorithm for process \(p \in \) consensus group \(g \)

On initialization

\[
\text{values}_i(0) := \{v_i\}; \quad \text{values}_i(0) := \{\}
\]

in round \(r \) (1 \leq r \leq f+1)

\[
\text{B-multicast}(g, \text{values}_i(r) \rightarrow \text{values}_j(r-1)):
\]

// send only values that have not been sent

\[
\text{values}_i(r+1) := \text{values}_i(r)
\]

while (in round r)

- On B-deliver(\(v_j \)) from some \(p_j \)

\[
\text{values}_i(r+1) := \text{values}_i(r+1) \cup v_j
\]

After \(f+1 \) rounds

assign \(d_i = \text{minimum} \{\text{values}_i(r)\} \)