Interprocess communication (IPC): message exchange between sender and receiver.

Operation

- send operation
- receive operation

Blocking
- blocking
- non-blocking

Synchronous

Asynchronous

Message exchange

Message exchange takes place between a sending and a receiving process.

Basic functionality

\[\text{send}(E: \text{receiver}, N: \text{message});\]
\[\text{receive}(S: \text{sender}, B: \text{buffer});\]

Communication perspectives

We can distinguish between different perspectives with respect to the communication among the involved processes:

- the sender's view,
- the receiver's view

Assumption: Sender S has invoked the operation $\text{send}(E, N)$; receiver E performs the operation $\text{receive}(S, B)$.

Background

Categories of Message Exchange
Asynchronous message exchange (nonblocking)

Synchronous message exchange (blocking)

Remote-invocation send

Sender S suspends execution until the receiver has received and processed the submitted request that was delivered as part of the message.

Advantages of asynchronous message exchange

Advantages

useful for real-time applications, especially if the sending process should not be blocked.
supports parallel execution threads at the sender's and the receiver's sites.
it can be used for event signaling purposes.

Disadvantages

management of message buffers, handling of buffer overflow, access control problems, and of process crashes (receiver).
notification of S in case of failures may be a problem, since mostly S has already continued with its regular processing.
design of a correct system is difficult. The failure behavior depends heavily on buffer sizes, buffer contents, and the time behavior of the exchanged messages.

Asynchronous message exchange (nonblocking)

Sender S can resume its processing immediately after the message N is put forward into the message queue NP (NP is also called message buffer).

S will not wait until the receiver E has received the message N.

A receive operation indicates that the receiver is interested in receiving a message.

Example

Advantages of asynchronous message exchange
Asynchronous message exchange (nonblocking)
Synchronous message exchange (blocking)

Remote-invocation send
Sender suspends execution until the receiver has received and processed the submitted request that was delivered as part of the message.

Names are used to uniquely identify entities and refer to locations. An important issue is name resolution.

Names
A name is a string of characters that is used to refer to an entity (e.g. host, printer, file).
- entities have access points to invoke operations on them ⇒ address is the name of the access point.
- an identifier is a name which uniquely identifies an entity.

Name space
Names in distributed systems are organized into a name space.
- Name spaces are organized hierarchically.
- Representation as a labeled directed graph.
- Path along graph edges specifies the entity name, e.g. documents/projects/lecture2003/concept.txt; absolute vs relative path names.

Name resolution : a name lookup returns the identifier or the address of an entity, e.g. LDAP Name Service.

Paradigms for distributed applications
Information Sharing
Message exchange
Naming entities
Bidirectional communication
Producer-consumer interaction
Client-server model
Peer-to-peer model
Group model
Taxonomy of communication
Message serialization
Levels of Abstraction

Sockets
Sockets provide a low level abstraction for programming bidirectional communication.
- A socket is an application created, OS-controlled interface into which application can both send and receive messages to/from another application.

unique identification: IP-address and port number.

Sockets in Java
Java package java.net
Socket constructors - methods