Script generated by TTT

Title: Distributed_Applications (19.06.2012)
Date: Tue Jun 19 14:30:08 CEST 2012
Duration: 92:42 min

Pages: 31

e 5]

The 18IS system developed at Cornell University is a framework for reliable distributed computing based upon
process groups. It specifically supports group communication. Successor of 18IS was i

18IS is a toolkit whose basic functions include process group management and ordered multicast primitives
for communication with the members of the process group.

abcast: totally ordered multicast.

chcast: causally ordered multicast.

abcast protocol
cbcast protocol

Group communication oL @

I

Introduction
Group communication facilities the interaction between groups of processes.
Motivation
Important issues
Conventional approaches
Groups of components
Management of groups
Message dissemination
Message delivery
Taxonomy of multicast

Group communication in ISIS
JGroups

¢ @

atomic broadcast supports a total ordering for message delivery, i.e. all messages to the group G are dslivered
to all group members of G in the same sequence.

abcast realizes a serialized multicast

abcast is based on a 2-phase commit protocol; message serialization is supported by a distributed
algorithm and logical timestamps.

Phase 1
Serhtler S sends the message N with logical timestamp Ts (N) to all group members of G (e.g. by multicast).

Each g £ G determines a new logical timestamp Tg (N) for the received message N and returns it to S.

Phase 2

S determines a new logical timestamp for N; it is derived from all proposed timestamps Tq (N) of the group
members g.

Tanew (N) = max (Ty (N)) + /|G| , with j being a unique identifier of sender S.
S sends acommit to all g = G with Ts pew (N).

Each g = G delivers the message according to the logical timestamp to its associated application process.

Gener

) Algorithm of the cbcast protocol s @

The 18IS system developed at Cornell University is a framework for reliable distributed computing based upon Let n be the number of group members of G. Each g € G has a unique number of {1, ..., n} and a state vector *
process groups. It specifically supports group communication. Successor of 18IS was i z which stores information about the received group messages.
18IS is a toolkit whose basic functions include process group management and ordered multicast primitives The state vector represents a vector clock .

for communication with the members of the process group.

L) Each message N of sender 8 has a unique number; message numbers are linearly ordered with increasing
abcast: totally ordered multicast.

numbers.
chcast: causally ordered multicast. Let j be & group member of the group G.
abcast protocol the state vector z = (zj Ji= p1....m Specffies the number of messages received in sequence from group

member i.
chcast protocol
Example: z; = k; k is the number of the last message sent by member i = G and received in

correct sequence by the group member j.

at group initialization all state vectors are reset (all components are 0).

Sending a message N; j © G sends a message to all other group members.

zj := zj + 1; the current state vector is appended to N and sent to all group members.

Receiving a message N sent by member i = G.

Message N contains state vector z; . There are two conditions for delivery of N to the application
process of |

(C1):zi=zi-1.

(C2:Vk Zizy <z

cbcast protocol L) JGroups i)
causal broadcast guarantees the correct sequence of message delivery for causally related messages. is a reliable group communication toolkit written in Java. It is based on IP multicast and extends it

- g .) L with
Concurrent messages can be delivered in any sequence; this approach minimizes message delay.

reliability, especially ordering of messages and atomicity.
Introduction

Algorithm of the chcast protocol management of group membership.

Programming Interface of JGroups
groups are identified via channels.

channel . connect ("MyGroup") :

achannel is connected to a protocol stack specifying its properties.

application
l e Total ordering of messages
| Sequencer . .
| using a coordinator
|
protocol : GMS group membership layer
stack |
: Frag fragmentation layer
|
|
| uppP
L. T
TETN

[netwark |

JGroups 2O

management of group membership.

"hﬂt"t;-‘coja’w J'or\' \er‘"l] wu-r-ql Jrv vy g -

8cey)
Programming Interface of JGroups p (pmslmy
groups are identified via channels. th 30043 $
——
channel . connect("MyGroup"):
(Y_ﬁ p") ‘ __E.
]
a channel is connected to a protocol stack specifying its properties.
application
\ Se Total ordering of messages
quencer . .

| using a coordinator

1
protocol : GMS group membership layer
stack I

: Frag fragmentation layer =

1

i uDP

[T

/'/ \‘\
| network |

N

Code Example

Group communication

Introduction
Group communication facilities the interaction between groups of processes.
Motivation

Important issues
Conventional approaches

Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in I1SIS

JGroups

String props = "UDP:Frag:GMS:causal";
Message send_msqg:
Object recv_msg:
Channel channel = new JChannel(props):

channel.connect ("MyGroup"):

send_msg = new Message(null. null., "hello World"):
channel .send(send_msg)

recv_msg = channel.receive(0):
System.out.println("Received " + recv_msg):

channel .disconnect():

channel.close():

problem of distributed processes to agree on a valug; processes communicate by message passing.
Examples
all correct computers controlling a spaceship should decide to proceed with landing, or all of them
should decide to abort (after each has proposed one action or the other)

in an electronic money transfer transaction, all involved processes must consistently agree on whether
to perform the transaction (debit and credit), or not

desirable: reaching consensus even in the presence of faults

assumption: communication is reliable, but processes may fail

Consensus Problem
Consensus in synchronous Networks

Consensus Problem)

agreement on the value of a decision variable amongst all correct processes

pi is in state undecided and proposes a single value v; , drawn from a set of values.
next, processes communicate with each other to exchange values.

in doing so, p; sets decision variable d, and enters the decided state after which the value of d; remains
unchanged

@ d1 := proceed

v1 = proceed

&

v2 = proceed

Properties
Algorithm
The Byzantine Generals Problem

Interactive Consistency Problem

Relationship hetween these Problems

e 5]

algorithm to solve consensus in a failure-free environment

each process reliably multicasts proposed values

after receiving response, solves consensus function majority(vi va 1,

which returns most often proposed value, or undefined if no majority exists.

properties:

termination guaranteed by reliability of multicast.

agreement, integrity: by definition of majority, and the integrity of reliable multicast (all processes solve
same function on same data).

when crashes occur

how to detect failure?
will algorithm terminate?

when byzantine failures occur [y

processes communicate random values.
evaluation of consensus function may be inconsistent.

malevolent processes may deliberately propose false or inconsistent values.

L ©

The following conditions should hold for every execution of the algorithm:
termination : eventually, each correct process sets its decision variable
agreement : the decision variable of all correct processes is the same in the decided state.

integrity : if the correct processes all proposed the same value, then any correct process has chosen that
value in the decided state.

three or more generals are to agree to attack or to retreat.
one general, the commander issues order

others (lieutenants to the commander) have to decide to attack or retreat

one of the generals may be treacherous
if commander is treacherous, it proposes attacking to one general and retreating to the other

if lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and
others that commander ordered to retreat

difference to consensus problem: one process supplies a value that others have to agree on

Aranackino.

The Byzantine Generals Problem oo @

one of the generals may be treacherous
if commander is treacherous, it proposes attacking to one general and retreating to the other

it lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and
others that commander ordered to retreat

° . []
PN I CGMMQMJI/\
N
waly

difference to consensus problem: one process supplies a value that others have to agree on
properties: ’ —

termination: eventually each correct process sets its decision variable.

agreement: the decision value of all correct processes is the same.

o @

Each process suggests a single value.

goal : all correct processes agree on a vector of values ("decision vector"); each component correspond to
one processes’ agreed value

example: agreement about each processes' local state.

properties:

termination: eventually each correct process sets its decision vector.
agreement: the decision vector of all correct processes is the same.

integrity: if pi is correct, then all correct processes decide on v; as the i-th component of their vector.

The Byzantine Generals Problem

if lisutenants are treacherous, they tell one of their peers that commander ordered to attack, and
others that commander ordered to retreat

difference to consensus problem: one process supplies a value that others have to agree on
properties: -

termination: eventually each correct process SeciloRelan IR dE e

agreement: the decision value of all correct processes is the same.

integrity: if the commander is correct, then all processes decide on the value that the commander
proposes.

Assume that the previous problems could be solved, yielding the following decision variables

Consensus : C; (v4 vq) returns the decision value of p;

Byzantine Generals : BG, (k, v) returns the decision value of p; where p, is the commander which
proposes the value v

Interactive Consistency : 1C (vq ..., va)[k] returns the k-th value in the decision vector of p; where v4
vy are the values that the processes proposed

Possibilities to derive solutions out of the solutions to other problems
solution to IC from BG

run BG n times, once with each p; acting as commander
IC, (V1 ..., Va)[k] = BGy (k, vic) with (i, k = 1, .., n)

solution to € from IC

run I1C to produce a vector of values at each process
apply an appropriate function on the vector's values to derive a single value
Ci (V1 ..., va) = majority(I1Ci (v1 ,.., va)[1L.-.. ICi (v1 ..., va)[N])

solution to BG from C

commander p, sends its proposed value v to itself and each of the remaining processes

all processes run C with the values vy ..., vy that they receive

@

Relationship between these Problems

PIVPUDSED UG valus v

Interactive Consistency : 1C; (v1 ,.., vn)[k] returns the k-th value in the decision vector of p; where v ..,
——

vy are the values that the processes proposed _
Possilm't-ies to derive solutions out of the solutions to other problems o O —
solution to IC from BG o -
run BG n times, once with each p; acting as commander o o

—

IC, (v1 ,.., v)[K] = BGy (K, vi) with (i, k =1, ..,)

solution to € from IC

apply an appropriate function on the vector's values to derive a single value
™

run 1C to produce a vector of values at each process

Ci (vi ..., vn) = majority(ICi (v1 ,... va)[1]..., 1Ci (v1 ..., vn)[N])

solution to BG from C

commander pi sends its proposed value v to itself and each of the remaining processes
all processes run C with the values vy ..., va that they receive
derive BG, (k, v) = C; (vq ..., va) withi=1, ... n

termination, agreement and integrity preserved in each case.

Assumption : no more than f of the n processes crash (f < n).
The algorithm proceeds in f+1 rounds in order to reach consensus.
the processes B-multicast values between them.
at the end of +1 rounds, all surviving processes are in a position to agres.
algorithm for process p; = concensus group g
On initialization
values; (1) := {vi }: values; (0) := {}:
in round r (1 € r £ f+1)
B-multicast(g, wvalues; (r)-values; (r-1)):
sssend only values that have not been sent
values; (r+1)%:= values; (r)
while (in round r) {
On B-deliver(v;) from some pj
values; (r+1) := wvalues; (r+1) U vy

}

After (f+1) rounds

assign di = minimum (values; (f+1))

Distributed Consensus L)

problem of distributed processes to agree on a valug; processes communicate by message passing.
Examples
all correct computers controlling a spaceship should decide to proceed with landing, or all of them
should decide to abort (after each has proposed one action or the other)

in an electronic money transfer transaction, all involved processes must consistently agree on whether
to perform the transaction (debit and credit), or not

desirable: reaching consensus even in the presence of faults

assumption: communication is reliable, but processes may fail

Consensus Problem
Consensus in synchronous Networks

Authentication service Kerberos cL @

Definition: Authentication means verifying the identities of the communicating partners to one another in a
secure manner.

Kerberos has been developed at the MIT as part of the distributed framework Athena. Kerberos ist part of a
variety authentication components. The Kerberos authentication protocol is based on the protocol by Needham
and Schroder.

Introduction

This course provides only a short introduction to Kerberos (for further information, consult the |Kerberos
Web-Sitel)

Motivation
Security objects of Kerberos

Authentication process scenario

oo @

Kerberos assumes the following components

Client C,

Server S,

Key distribution center KDC, and
Ticket granting service TGS.

Goal of Kerberos
Aclied c requests the service of the server S. KDC and TGS are supposed to guarantee the secrecy and
authenticity requirements.

1. KDC manages the secret keys of the registered components.
2. Within a session TGS provides the client C with tickets for authentication with servers of the distributed
system.

co @

N Kerberos
bg
KDC TGS
A /
1 TGS request Server
ticket i
request
TGS tickef

server ticket

authentifier 5
c > S

6 authentifier

A

Animation Kerberos

Kerberos enables authentication through the following three security objects.

1. TGS ticket : issued by KDC to the client C for presentation at TGS.

2. Authentifier : generated by client C; it identifies the client and guarantees the validity for the communication
with server S.

3. Session key : generated by Kerberos for the communication between client C and server S.

Authentication process scenario)
ke

Graphical representation
Description of exchanged messages

Problems with Kerberos
Manipulation of local computer clocks to circumvent the validity time of tickets

i.e. synchronization of clocks in distributed systems must be authorized and authenticated.

Example: user login with Kerberos

Message 3: C to TGS \{b ©
C — TGS with information (C, Tc) k(c.10s]
ticket(C, TAS) jge]
S
TGS determines a random session key Ke,s , if
TGS ticket is still valid,
Te is current, and
field C matches (of the first parameter and of the ticket).
Generated by Targerea

co @

1. login program of the workstation W sends user name N to KDC.

2. if the user is known, then KDC sends a session key Ky encrypted with the user password, as well as a TGS
ticket.

3. login program requests the password from the user and decrypts the session key Ky using the password; if
the password was correct, then the decrypted session key Ky and the session key Kn within the TGS ticket
are identical.

4. the passworti can be removed from the main memory because for further communication, only Ky and the
TGS ticket are used; both are used to authenticate the user at TGS if the user requests a server S.

5. establish a user login session on workstation W.

Graphical representation

Kerberos
KDC TGS
A /
1 TGS request Server,
ticket tickef
request
TGS ticket server ticket
A 4 authentifier 5
Cc < > °
6 authentifier

Animation Kerberos

= Prof. J. Schlichter

- Lehrstuhl fiir Angewandte Informatik / Kooperative Systeme, Fakultét fir Informatik, TU Miinchen

: Boltzmannstr. 3, 85748 Garching

Email: |schlichter @in.tum.de|
Tel.: 089-289 18654
URL: hitp:/Awww11.in.tum.de/

Overview

Introduction

Architecture of distributed systems

Remote Invocation (RPC/RMI)

Basic mechanisms for distributed applications

Web Services

Design of distributed applications

Distributed file service

Distributed Shared Memory

Object-based Distributed Systems
Summary

Distributed Applications - Verteilte Anwendungen

