LR(2) to LR(1)

Algorithm:

For a rule \(A \to \alpha \), which is reduce-conflicting under terminal \(x \):

- \(B \to \beta A \) is also considered reduce-conflicting under terminal \(x \)
- \(B \to \beta A C \gamma \) is transformed by right-context-extraction on \(C \):

\[
B \to \beta A C \gamma \quad \Rightarrow \quad B \to \beta A x \gamma, \quad \text{for } x \in \text{First}(C) \cup \alpha
\]

- The appropriate rules, created from introducing \(\langle Ax \rangle \to \delta \) and \(\langle x/B \rangle \to \eta \) are added to the grammar

LR(2) to LR(1)

Example 2 finished:

With fresh nonterminals we get the final grammar

\[
S \rightarrow b \{ a c \}^0 | b S b B^1 | a \gamma | a a c^3
A \rightarrow c \{ a c \}
B \rightarrow C A^0 | S b B^1
C \rightarrow b C D^0 | b S b E^3 | a a^2 | a a c a^3
D \rightarrow a^0 | a c a^1
E \rightarrow C D^0 | S b E^3
\]
LR(2) to LR(1)

Algorithm:

For a Rule $A \rightarrow \alpha$, which is reduce-conflicting under terminal x

- $B \rightarrow \beta A$ is also considered reduce-conflicting under terminal x
- $B \rightarrow \beta AC\gamma$ is transformed by right-context-propagation on C:

$$B \rightarrow \beta AC\gamma \quad \Rightarrow \quad B \rightarrow \beta Ax \{x/C\} \gamma$$

if $e \in \text{First}_L(C)$ then consider $B \rightarrow \beta A\gamma$ for r.-c.-extraction

- $B \rightarrow \beta A x\gamma$ is transformed by right-context-extraction on A:

$$B \rightarrow \beta A x\gamma \quad \Rightarrow \quad B \rightarrow \beta \{A_x\} \gamma$$

- The appropriate rules, created from introducing $(A_x) \rightarrow \delta$ and $(x/B) \rightarrow \gamma$ are added to the grammar

Syntactic Analysis

Chapter 5:
Summary

LR(2) to LR(1)

Right-Context-Propagation Algorithm:

For $(A\gamma)$ with $A \rightarrow \alpha_1 \ldots \alpha_k$, if α_k matches

- γA for some $\gamma \in (N \cup T)^*$, then $(A\gamma) \rightarrow \gamma (A\alpha_k)$ is added
- else $(A\gamma) \rightarrow \alpha_k, x$ is added

Right-Context-Extraction Algorithm:

For (x/B) with $B \rightarrow \alpha_1 \ldots \alpha_k$, if α_i matches

- $C\gamma$ for some $\gamma \in (N \cup T)^*$, then $(x/B) \rightarrow \{x/C\} \gamma$ is added
- $x\gamma$ for some $\gamma \in (N \cup T)^*$, then $(x/B) \rightarrow \gamma$ is added
- $y\gamma$ for some $\gamma \in (N \cup T)^*$ and $y \neq x$, then nothing is added

Parsing Methods

deterministic languages

= LR(1) = ... = LR(k)

- LALR(k)
- SLR(k)
- LR(0)

regular languages

- LL(1)
- LL(k)
Example: Computation of the $\text{empty}[\cdot]$ Attribute

Consider the syntax tree of the regular expression $(a|b)^*a(a|b)$:

- Attach an attribute empty to every node of the syntax tree.
- Compute the attributes in a depth-first post-order traversal:
 - At a leaf, we can compute the value of empty without considering other nodes.
 - The attribute of an inner node only depends on the attribute of its children.
- The empty attribute is a synthetic attribute.
- The local dependencies between the attributes are dependent on the type of the node.
Implementation Strategy

- attach an attribute \textit{empty} to every node of the syntax tree
- compute the attributes in a \textit{depth-first post-order} traversal:
 - at a leaf, we can compute the value of \textit{empty} without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the \textit{empty} attribute is a \textit{synthetic} attribute
- The local dependencies between the attributes are dependent on the \textit{type} of the node

in general:

\begin{definition}
An attribute is called
- \textit{synthetic} if its value is always propagated upwards in the tree (in the direction root \rightarrow leaf)
- \textit{inherited} if its value is always propagated downwards in the tree (in the direction leaf \rightarrow root)
\end{definition}

Specification of General Attribute Systems

\begin{generalattribute}
In general, for establishing attribute systems we need a flexible way to refer to parents and children:

\begin{itemize}
 \item We use consecutive indices to refer to neighbouring attributes
\end{itemize}

\begin{align*}
 \text{attributes}[0] & : \text{the attribute of the current root node} \\
 \text{attributes}[i] & : \text{the attribute of the } i\text{-th child } (i > 0)
\end{align*}

Attribute Equations for empty

In order to compute an attribute \textit{locally}, we need to specify attribute equations for each node. These equations depend on the \textit{type} of the node:

for leaves: \(r = \begin{array}{c}
 1 \quad x
\end{array} \) we define \(\text{empty}[r] = (x = \epsilon) \).

otherwise:

\begin{align*}
 \text{empty}[r_1 \cdot r_2] &= \text{empty}[r_1] \lor \text{empty}[r_2] \\
 \text{empty}[r_1 \cdot r_2] &= \text{empty}[r_1] \land \text{empty}[r_2] \\
 \text{empty}[r_1] &= t \\
 \text{empty}[r_1?] &= t
\end{align*}

Observations

- the \textit{local} attribute equations need to be evaluated using a \textit{global} algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this \textit{evaluation strategy} has to be compatible with the \textit{dependencies} between attributes
Observations

- In order to infer an evaluation strategy, it is not enough to consider the local attribute dependencies at each node.
- The evaluation strategy must also depend on the global dependencies, that is, on the information flow between nodes.
- The global dependencies thus change with each new syntax tree.
- In the example, the parent node is always depending on children only.
- A depth-first post-order traversal is possible.
- In general, variable dependencies can be much more complex.

Simultaneous Computation of Multiple Attributes

Computing empty, first, next from regular expressions:

\[
S \rightarrow E : \quad \begin{align*}
\text{empty}[0] & : = \text{empty}[1] \\
\text{first}[0] & : = \text{first}[1] \\
\text{next}[1] & : = () \\
\end{align*}
\]

\[
E \rightarrow x : \quad \begin{align*}
\text{empty}[0] & : = (x \equiv \varepsilon) \\
\text{first}[0] & : = \{x \mid x \neq \varepsilon\} \\
& \quad \text{// (no equation for next)}
\end{align*}
\]

Regular Expressions: Rules for Alternative

\[
E \rightarrow E | E : \quad \begin{align*}
\text{empty}[0] & : = \text{empty}[1] \lor \text{empty}[2] \\
\text{first}[0] & : = \text{first}[1] \cup \text{first}[2] \\
\text{next}[0] & : = \text{next}[0] \\
\end{align*}
\]

Regular Expressions: Rules for Concatenation

\[
E \rightarrow E . E : \quad \begin{align*}
\text{empty}[0] & : = \text{empty}[1] \lor \text{empty}[2] \\
\text{first}[0] & : = \text{first}[1] \lor \text{empty}[1] \lor \text{first}[0] \\
\text{next}[0] & : = \text{next}[0] \\
\end{align*}
\]
Regular Expressions: Kleene-Star and ‘?’

\[
E \rightarrow E^* : \begin{align*}
\text{empty} [0] & := f \\
\text{first} [0] & := \text{first} [1] \\
\text{next} [1] & := \text{first} [1] \cup \text{next} [0]
\end{align*}
\]

\[
E \rightarrow E? : \begin{align*}
\text{empty} [0] & := f \\
\text{first} [0] & := \text{first} [1] \\
\text{next} [1] & := \text{next} [0]
\end{align*}
\]

\[D(E \rightarrow E^*) = \{ (\text{first}[1], \text{first}[0], (\text{next}[0], \text{next}[1])) \} \]

\[D(E \rightarrow E?) = \{ (\text{first}[1], \text{first}[0], (\text{next}[0], \text{next}[1])) \} \]

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals \(X \), compute a set \(R(X) \) of relations between its attributes, as an overapproximation of the global dependencies between root attributes of every production for \(X \).

Describe \(R(X) \), as sets of relations, similar to \(D(p) \) by

- setting up each production \(X \rightarrow X_1 \ldots X_n \)’s effect on the relations of \(R(X) \)
- compute effect on all so far accumulated evaluations of each rhs \(X_i \)’s \(R(X_i) \)
- iterate until stable

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for any derivation tree the dependencies between attributes are **acyclic**
- it is **DEXTIME**-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator \(L_{i,j} \) re-decorates relations from \(L \).

\[L[i] = \{(a[i], b[i]) \mid (a, b) \in L \} \]

\(\pi_0 \) projects only onto relations between root elements only

\[\pi_0(S) = \{(a, b) \mid (a[0], b[0]) \in S \} \]
Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars
If all \(D(p) \cup R^*(X_1)[1] \cup \ldots \cup R^*(X_k)[k] \) are acyclic for all \(p \in G \),
\(G \) is strongly acyclic.

Idea: we compute the least solution \(R^*(X) \) of \(R(X) \) by a fixpoint computation, starting from \(R(X) = \emptyset \).

Example: Strong Acyclic Test

Continue with \(R(S) = [S \rightarrow L]^2(\mathcal{R}(L)) \):

1. re-decorate and embed \(\mathcal{R}(L)[1] \)
2. transitive closure of all relations
 \(\mathcal{D}(S \rightarrow L) \cup \{(1, [1])\} \cup \{(0, [1])\} \)\n3. apply \(\pi_0 \)
4. \(R(S) = \emptyset \)

Example: Strong Acyclic Test

Given grammar \(S \rightarrow L, L \rightarrow a \mid b \).

Dependency graphs \(\mathcal{D}_p \):

Strong Acyclic and Acyclic

The grammar \(S \rightarrow L, L \rightarrow a \mid b \) has only two derivation trees which are both acyclic.

It is not strongly acyclic since the over-approximated global dependence graph for the non-terminal \(L \) contributes to a cycle when computing \(R(S) \):
From Dependencies to Evaluation Strategies

Possible strategies: