Shift-Reduce Parser

Observation:
- The sequence of reductions corresponds to a reverse rightmost-derivation for the input
- To prove correctness, we have to prove:
 \[(e, w) \Rightarrow^* (A, e)\]
 \[\text{iff}\]
 \[A \Rightarrow^* w\]
- The shift-reduce pushdown automaton \(M^R_D\) is in general also non-deterministic
- For a deterministic parsing algorithm, we have to identify computation states for reduction

Reverse Rightmost Derivations in Shift-Reduce-Parsers

Idea: Observe reverse rightmost-derivations of \(M^R_D\)

Input:
- counter * 2 + 10

Pushdown:
- \(q_0\)

Bottom-up Analysis: Viable Prefix

\(\alpha \gamma\) is viable for \([B \rightarrow \gamma \bullet]\)

\(S \Rightarrow^* \alpha B v\)

... with \(\alpha = \alpha_1 \ldots \alpha_m\)
Bottom-up Analysis: Admissible Items

The item \([B \rightarrow \gamma \bullet \beta]\) is called admissible for \(\alpha'\) iff

\[S \rightarrow \gamma \alpha B\]

with \(\alpha' = \alpha \gamma\).

... with \(\alpha = \alpha_1 \ldots \alpha_m\)

Characteristic Automaton

Observation:
The set of viable prefixes from \((N \cup T)^*\) for (admissible) items can be computed from the content of the shift-reduce parser's pushdown with the help of a finite automaton:

States: Items
Start state: \([S \rightarrow \bullet \epsilon]\)
Final states: \(\{(B \rightarrow \gamma \bullet) \mid B \rightarrow \gamma \in P\}\)

Transitions:
1. \((\{A \rightarrow \alpha \bullet X \beta\}, X, \{A \rightarrow \alpha X \bullet \beta\}), X \in (N \cup T), A \rightarrow \alpha X \beta \in P;\)
2. \((\{A \rightarrow \alpha \bullet B \beta\}, B, \{B \rightarrow \bullet \gamma\}), A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P;\)

The automaton \(e(G)\) is called characteristic automaton for \(G\).

Reverse Rightmost Derivations in Shift-Reduce-Parsers

Idea: Observe reverse rightmost derivations of \(M^{R\|}\)

Input:

\[+40\]

Pushdown:

\(q(T + P)\)

Characteristic Automaton

Observation:
The set of viable prefixes from \((N \cup T)^*\) for (admissible) items can be computed from the content of the shift-reduce parser's pushdown with the help of a finite automaton:

States: Items
Start state: \([S \rightarrow \bullet \epsilon]\)
Final states: \(\{(B \rightarrow \gamma \bullet) \mid B \rightarrow \gamma \in P\}\)

Transitions:
1. \((\{A \rightarrow \alpha \bullet X \beta\}, X, \{A \rightarrow \alpha X \bullet \beta\}), X \in (N \cup T), A \rightarrow \alpha X \beta \in P;\)
2. \((\{A \rightarrow \alpha \bullet B \beta\}, B, \{B \rightarrow \bullet \gamma\}), A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P;\)

The automaton \(e(G)\) is called characteristic automaton for \(G\).
Characteristic Automaton

For example:

\[
E \rightarrow E + T \mid T \\
T \rightarrow T + F \mid F \\
F \rightarrow (E) \mid \text{int}
\]

Observation:

The set of viable prefixes from \((\mathcal{N} \cup \mathcal{T})^*\) for (admissible) items can be computed from the content of the shift-reduce parser’s pushdown with the help of a finite automaton:

States: Items

Start state: \([S \rightarrow \bullet S]\)

Final states: \(\{[B \rightarrow \gamma \bullet] \mid B \rightarrow \gamma \in \mathcal{F}\}\)

Transitions:

1. \([(A \rightarrow \alpha \bullet X \beta), X, ([A \rightarrow \alpha X \bullet \beta]), X \in (\mathcal{N} \cup \mathcal{T}), A \rightarrow \alpha X \beta \in \mathcal{P};\]
2. \([(A \rightarrow \alpha \bullet B \beta \bullet \epsilon, [B \rightarrow \bullet \gamma]), A \rightarrow \alpha B \beta \bullet, B \rightarrow \gamma \in \mathcal{F};\]

The automaton \(\epsilon(G)\) is called characteristic automaton for \(G\).
Canonical LR(0)-Automaton

The canonical LR(0)-automaton $LR(G)$ is created from G by:
1. performing arbitrarily many ε-transitions after every consuming transition
2. performing the powerset construction

... for example:

Canonical LR(0)-Automaton

Example:

$$\delta(q_0, \epsilon) = \{(E \to \epsilon), (E \to E + T), (E \to \epsilon + T), (E \to \epsilon + F), (E \to \epsilon + \text{int})\}$$

Therefore we determine:

$$\delta(q_0, E) = q_1$$

Canonical LR(0)-Automaton

$$\delta(q_0, \epsilon) = \{(E \to \epsilon), (E \to E + T), (E \to \epsilon + T), (E \to \epsilon + F), (E \to \epsilon + \text{int})\}$$

$$\delta(q_1, E) = \{(E \to E + T), (E \to \epsilon + T), (E \to \epsilon + F), (E \to \epsilon + \text{int})\}$$

$$\delta(q_0, \epsilon + T) = \{(T \to T + F), (T \to \epsilon + T), (T \to \epsilon + F), (T \to \epsilon + \text{int})\}$$

$$\delta(q_1, \epsilon + T) = \{(T \to T + F), (T \to \epsilon + T), (T \to \epsilon + F), (T \to \epsilon + \text{int})\}$$

$$\delta(q_0, \epsilon + F) = \{(F \to T + F), (F \to \epsilon + F), (F \to \epsilon + \text{int})\}$$

$$\delta(q_1, \epsilon + F) = \{(F \to T + F), (F \to \epsilon + F), (F \to \epsilon + \text{int})\}$$

$$\delta(q_0, \epsilon + \text{int}) = \{(\text{int} \to \text{int}), (\text{int} \to \epsilon + \text{int})\}$$

$$\delta(q_1, \epsilon + \text{int}) = \{(\text{int} \to \text{int}), (\text{int} \to \epsilon + \text{int})\}$$
Canonical LR(0)-Automaton

The canonical LR(0)-automaton \(LR(G) \) is created from \(\epsilon(G) \) by:
1. performing arbitrarily many \(\epsilon \)-transitions after every consuming transition
2. performing the powerset construction

... for example:

![Diagram of an LR(0)-Automaton]

Canonical LR(0)-Automaton

Observation:

The canonical LR(0)-automaton can be created directly from the grammar. Therefore we need a helper function \(\delta^*_\epsilon \) (\(\epsilon \)-closure)

\[
\delta^*_\epsilon(q) = q \cup \{ [B \rightarrow \bullet] \mid \exists [A \rightarrow \alpha \bullet B'] \in q, \beta \in (N \cup T)^* : B' \rightarrow \epsilon B \beta \}
\]

We define:
- **States**: Sets of items;
- **Start state**: \(\delta^*_\epsilon([S' \rightarrow \bullet S]) \);
- **Final states**: \([q] \mid \exists \alpha \in P : [A \rightarrow \alpha \bullet] \in q \);
- **Transitions**: \(\delta(q, X) = \delta^*_\epsilon([A \rightarrow \alpha \bullet X \bullet] \mid [A \rightarrow \alpha \bullet X \bullet] \in q) \)

LR(0)-Parser

Idea for a parser:
- The parser manages a viable prefix \(\alpha = X_1 \ldots X_n \) on the pushdown and uses \(LR(G) \), to identify reduction spots.
- It can reduce with \(A \rightarrow \gamma \), if \([A \rightarrow \gamma \bullet] \) is admissible for \(\alpha \)

Optimization:
- We push the states instead of the \(X_i \) in order not to process the pushdown's content with the automaton anew all the time. Reduction with \(A \rightarrow \gamma \) leads to popping the uppermost \(\gamma \) states and continue with the state on top of the stack and input \(A \).

Attention:
- This parser is only deterministic, if each final state of the canonical LR(0)-automaton is conflict-free.
LR(0)-Parser

The construction of the LR(0)-parser:

States: \(Q \cup \{ \text{f} \} \) (f fresh)
Start state: \(q_0 \)
Final state: \(\text{f} \)

Transitions:
- **Shift**: \((p, a, p', q)\) if \(q = \delta(p, a) \neq \emptyset \)
- **Reduce**: \((p q_0 \ldots q_n, \alpha, p, q)\) if \([A \rightarrow X_1 \ldots X_m \bullet] \in Q_n, q = \delta(p, \alpha) \)
- **Finish**: \((p, \text{f}, \emptyset)\) if \([S \rightarrow S^*] \in \emptyset \)

with \(LR(G) = (Q, T, \delta, q_0, F) \).

LR(0)-Parser

Attention:
Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons:

- **Reduce-Reduce-Conflict**:
 \([A \rightarrow \gamma \bullet], [A' \rightarrow \gamma' \bullet] \in q \) with \(A \neq A' \vee \gamma \neq \gamma' \)

- **Shift-Reduce-Conflict**:
 \([A \rightarrow \gamma \bullet], [A' \rightarrow \alpha \bullet] \in q \) with \(\alpha \in T \)
 for a state \(q \in Q \).

Those states are called LR(0)-unsuited.

LR(0)-Parser

Correctness:

we show:

The accepting computations of an LR(0)-parser are one-to-one related to those of a shift-reduce parser \(MP \).

we conclude:
- The accepted language is exactly \(L(G) \)
- The sequence of reductions of an accepting computation for a word \(w \in T \) yields a reverse rightmost derivation of \(G \) for \(w \).

Revisiting the Conflicts of the LR(0)-Automaton

What differentiates the particular Reductions and Shifts?

Input:
* 2 + 40

Pushdown:
\((q_0 T) \)

E 0 T 1
E 1 T 0 F 2
T 1 T 1 T 2
F 2
int

E \rightarrow E + F | T
T \rightarrow T + T | F
F \rightarrow (E) | \text{int}
LR(k)-Grammars

Idea: Consider k-lookahead in conflict situations.

Definition:
The reduced contextfree grammar G is called $LR(k)$-grammar, if for $\text{First}_k(w) = \text{First}_k(z)$ with:

$$
\begin{align*}
S & \rightarrow \alpha A w \quad \rightarrow \quad \alpha \beta w \\
S & \rightarrow \beta A' w' \quad \rightarrow \quad \alpha \beta x
\end{align*}
$$

follows: $\alpha = \alpha' \land A = A' \land w' = x$.

for example:

1. $S \rightarrow A \mid B \quad A \rightarrow aAb \mid 0 \quad B \rightarrow aBbb \mid 1$

2. $a b^n c A b^n b^m c$

LR(k)-Grammars

for example:

3. $S \rightarrow aAc \quad A \rightarrow b b A \mid b \quad \ldots$ is not $LR(0)$, but $LR(1)$:

 - Let $S \rightarrow _k \alpha X w \rightarrow \alpha \beta w$ with $\{y\} = \text{First}_k(w)$ then $\alpha \beta y$ is one of these forms:

 - $a b^n b c \ , \ a b^n b A c \ , \ a A c$

4. $S \rightarrow a Ac \quad A \rightarrow b Ab \mid b \quad \ldots$ is not $LR(k)$ for any $k \geq 0$:

 - Consider the rightmost derivations:

 $$
 S \rightarrow _k a b^n A b^n c \rightarrow a b^n b b^n c \quad 1 \leq n
 $$