Finite Automata

Definition Finite Automata
A non-deterministic finite automaton (NFA) is a tuple $A = (Q, \Sigma, I, F, \delta)$ with:

- Q a finite set of states;
- Σ a finite alphabet of inputs;
- $I \subseteq Q$ the set of start states;
- $F \subseteq Q$ the set of final states and
- δ the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata
Given $\delta : Q \times \Sigma \rightarrow Q$ a function and $|I| = 1$, then we call the NFA A deterministic (DFA).

Finite Automata

- Computations are paths in the graph.
- Accepting computations lead from I to F.
- An accepted word is the sequence of labels along an accepting computation ...

Once again, more formally:

- We define the transitive closure δ' of δ as the smallest set δ' with:

 $$(p, \epsilon, p), (p, x, p_n) \in \delta' \quad \text{and} \quad \forall (p, x, q) \in \delta \quad \text{and} \quad \forall (p, w, q) \in \delta',$$

 δ' characterizes for a path between the states p and q the words obtained by concatenating the labels along it.

- The set of all accepting words, i.e. A's accepted language can be described compactly as:

 $$\mathcal{L}(A) = \{ w \in \Sigma^* : |w| \in I \in F \in \delta' \}$$
In Linear Time from Regular Expressions to NFAs

Thompson’s Algorithm
Produces $O(n)$ states for regular expressions of length n.

Berry-Sethi Approach

Berry-Sethi Algorithm
Produces exactly $n + 1$ states without ε-transitions and demonstrates \rightarrow Equality Systems and \rightarrow Attribute Grammars

Idea:
The automaton tracks (conceptionally via a marker “\ast”), in the syntax tree of a regular expression, which subexpressions in e are reachable consuming the rest of input w.

Berry-Sethi Approach

... for example:

Glushkov Automaton
Produces exactly $n + 1$ states without ε-transitions and demonstrates \rightarrow Equality Systems and \rightarrow Attribute Grammars
Berry-Sethi Approach

Construction (naive version):

States: \(*r, r, e \) with \(r \) nodes of \(e \);
Start state: \(e \);
Final state: \(e \);
Transitions: for leaves \(r = \ast \ldots \ast \) we require: \((*r, r, e) \).
The leftover transitions are:

<table>
<thead>
<tr>
<th>(r_1 \cup r_2)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(*r, r, e)</td>
</tr>
<tr>
<td></td>
<td>(e, r, e)</td>
</tr>
<tr>
<td></td>
<td>(e, e, e)</td>
</tr>
<tr>
<td>(r_2)</td>
<td>(*r, r, e)</td>
</tr>
<tr>
<td></td>
<td>(e, r, e)</td>
</tr>
<tr>
<td></td>
<td>(e, e, e)</td>
</tr>
</tbody>
</table>

Berry-Sethi Approach

Discussion:
- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

\[\Rightarrow \text{Strategy for the sophisticated version:} \]
Avoid generating \(e \)-transitions

Idea:
Pre-compute helper attributes during \(D(\text{epht})F(\text{irst})S(\text{each})! \)

Necessary node-attributes:
- \(\text{first} \): the set of read states below \(r \) which may be reached \(\text{first} \), when descending into \(r \).
- \(\text{next} \): the set of read states to the right of \(r \), which may be reached \(\text{first} \) in the traversal after \(r \).
- \(\text{last} \): the set of read states below \(r \), which may be reached \(\text{last} \) when descending into \(r \).
- \(\text{empty} \): can the subexpression \(r \) consume \(e \)?

Berry-Sethi Approach: 1st step

\[\text{empty}[r] = 1 \text{ if and only if } \exists e \subseteq [r] \]

... for example:
Berry-Sethi Approach: 1st step

Implementation:
DFS post-order traversal

for leaves \(r \equiv \text{leaf} \) we find \(\text{empty}(r) = (x = \epsilon) \).

Otherwise:
\[
\begin{align*}
\text{empty}(r_1 \cdot r_2) &= \text{empty}(r_1) \vee \text{empty}(r_2) \\
\text{empty}(r_1 \cdot r_2) &= \text{empty}(r_1) \wedge \text{empty}(r_2) \\
\text{empty}(r_1^*) &= t
\end{align*}
\]

Berry-Sethi Approach: 2nd step

Implementation:
DFS post-order traversal

for leaves \(r \equiv \text{leaf} \) we find \(\text{first}(r) = \{ i \mid x \neq \epsilon \} \).

Otherwise:
\[
\begin{align*}
\text{first}(r_1 \cdot r_2) &= \text{first}(r_1) \cup \text{first}(r_2) \\
\text{first}(r_1 \cdot r_2) &= \begin{cases} \\
\text{first}(r_1) \cup \text{first}(r_2) & \text{if} \quad \text{empty}(r_1) = t \\
\text{first}(r_1) & \text{if} \quad \text{empty}(r_1) = f
\end{cases}
\end{align*}
\]

Berry-Sethi Approach: 3rd step

Implementation:
DFS post-order traversal

The may-set of first reached read states: The set of read states, that may be reached from \(\tau \) (i.e. while descending into \(\tau \)) via sequences of \(\epsilon \)-transitions:
\[
\text{first}(r) = \{ i \mid (i, \epsilon, * \tau, \epsilon) \in \delta' \}, \quad x \neq \epsilon
\]

... for example:

![Diagram](image1)

The may-set of next read states: The set of read states within the subtrees right of \(\tau \) that may be reached next via sequences of \(\epsilon \)-transitions.
\[
\text{next}(r) = \{ i \mid (i, \epsilon, * \tau, \epsilon) \in \delta' \}, \quad x \neq \epsilon
\]

... for example:

![Diagram](image2)
Implementation:

DFS pre-order traversal

For the root, we find: \(\text{next}[r] = \emptyset \)

Apart from that we distinguish, based on the context:

<table>
<thead>
<tr>
<th>(r)</th>
<th>(\text{next}[r])</th>
<th>Equalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(r_1)</td>
<td>(\text{next}[r_1] = \emptyset)</td>
</tr>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
<td>(\text{next}[r_2] = \text{next}[r])</td>
</tr>
</tbody>
</table>
| \(r_1 \) | \(r_3 \) | \(\text{next}[r_3] = \left\{ \begin{array}{l} \text{first}[r_3] \cup \text{next}[r] \\
\text{first}[r_3] \end{array} \right\} \text{if empty}[r_3] = f \\
\text{next}[r_2] \text{if empty}[r_3] = t \) |
| \(r_1 \) | \(r_4 \) | \(\text{next}[r_4] = \text{next}[r] \) |
| \(r_1 \) | \(r_7 \) | \(\text{next}[r_7] = \text{next}[r] \) |

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of \(\ast \), that may be reached next via sequences of \(\epsilon \)-transitions.

\[\text{next}[r] = \{ r | (r, \ast, \epsilon, \emptyset, \emptyset) \in \delta', x \neq \epsilon \} \]

... for example:

```
  0 1 2 0 1
  +---------+
  0 1 2 3 4
  +---------+
```

Implementation:

DFS pre-order traversal

For the root, we find: \(\text{next}[r] = \emptyset \)

Apart from that we distinguish, based on the context:

<table>
<thead>
<tr>
<th>(r)</th>
<th>(\text{next}[r])</th>
<th>Equalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
<td>(\text{next}[r_2] = \text{next}[r])</td>
</tr>
</tbody>
</table>
| \(r_1 \) | \(r_3 \) | \(\text{next}[r_3] = \left\{ \begin{array}{l} \text{first}[r_3] \cup \text{next}[r] \\
\text{first}[r_3] \end{array} \right\} \text{if empty}[r_3] = f \\
\text{next}[r_2] \text{if empty}[r_3] = t \) |
| \(r_1 \) | \(r_4 \) | \(\text{next}[r_4] = \text{next}[r] \) |
| \(r_1 \) | \(r_7 \) | \(\text{next}[r_7] = \text{next}[r] \) |
| \(r_1 \) | \(r_8 \) | \(\text{next}[r_8] = \text{next}[r] \) |
Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of \(\rightarrow x \) that may be reached next via sequences of \(\epsilon \)-transitions.

\[\text{next}[r] = \{ i \mid \langle r, x, \epsilon, \rightarrow x \rangle \in \delta', x \neq \epsilon \} \]

... for example:

```
  12
    1
   / \
  0   2
    \   \
     0
```

Berry-Sethi Approach: 4th step

Implementation:

DFS post-order traversal

for leaves \(r \equiv \epsilon \cdot x \) we find \(\text{last}[r] = \{ i \mid x \neq \epsilon \} \).

Otherwise:

\[
\begin{align*}
\text{last}[r_1 \cdot r_2] &= \text{last}[r_1] \cup \text{last}[r_2] \\
\text{last}[r_1 \cdot r_2] &= \{ \text{last}[r_1] \cup \text{last}[r_2] \} \quad \text{if empty}(r_2) = t \\
\text{last}[r_1?] &= \text{last}[r_1] \\
\text{last}[r_1?] &= \text{last}[r_1]
\end{align*}
\]

Berry-Sethi Approach: (sophisticated version)

Implementation:

DFS pre-order traversal

For the root, we find:

\(\text{next}[] = \emptyset \)

Apart from that we distinguish, based on the context:

<table>
<thead>
<tr>
<th>(r)</th>
<th>Equalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>(\text{next}[r_1] = \text{next}[r_2])</td>
</tr>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>(\text{next}[r_2] = \text{next}[r_1])</td>
</tr>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>(\text{first}[r_1], \text{next}[r_2]) if (\text{empty}(r_1) = t)</td>
</tr>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>(\text{first}[r_2], \text{next}[r_1]) if (\text{empty}(r_2) = f)</td>
</tr>
<tr>
<td>(r_1)</td>
<td>(\text{last}[r_1] = \text{next}[r_1])</td>
</tr>
<tr>
<td>(r_1)</td>
<td>(\text{last}[r_1] = \text{next}[r_1])</td>
</tr>
</tbody>
</table>

Construction (sophisticated version):

Create an automaton based on the syntax tree's new attributes:

- States: \(\{ \epsilon \} \cup \{ i \mid i \text{ a leaf} \} \)
- Start state: \(\epsilon \)
- Final states: \(\text{last}[\epsilon] \) if \(\text{empty}[\epsilon] = f \)
- \(\{ \epsilon \} \cup \{ \text{last}[\epsilon] \} \) otherwise
- Transitions:
 - \(\{ \epsilon, a, \epsilon \} \) if \(a \in \text{first}[r] \) and \(a \) labeled with \(o \) and \(\text{next}[r] \) labeled with \(w \)

We call the resulting automaton \(A_e \).
Berry-Sethi Approach

... for example:

Remarks:
- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...