Script generated by TTT

Title: Petter: Compilerbau (18.04.2016)
Date: Mon Apr 18 14:26:01 CEST 2016
Duration: 90:04 min

Pages: 35

Berry-Sethi Approach

Glushkov Algorithm

Produces exactly n + 1 states without e-transitions Viktor M. Glushkov
and demonstrates — Equality Systems and — Attribute Grammars

Idea:

The automaton tracks (conceptionally via a marker “s”, in the syntax
tree of a regular expression, which subexpressions in ¢ are reachable
consuming the rest of input w.

In Linear Time from Regular Expressions to NFAs

Thompson’s Algorithm

Produces O(n) states for regular expressions of WU
length n.

Berry-Sethi Approach

... for example:

(alb) alalb)

Berry-Sethi Approach Berry-Sethi Approach

... for example: ... for example:

w = é}(){)-

Berry-Sethi Approach Berry-Sethi Approach

... for example: ... for example:

Berry-Sethi Approach

... for example:

Berry-Sethi Approach

... for example:

Berry-Sethi Approach

In general:

@ Inputis only consumed at the leaves.
@ Navigating the tree does not consume input — e-transitions
@ For a formal construction we need identifiers for states.

@ For a node n’s identifier we take the subexpression,
corresponding to the subtree dominated by n.

@ There are possibly identical subexpressions in one regular
expression.

we enumerate the leaves ...

Berry-Sethi Approach

... for example:

Berry-Sethi Approach (naive version) Berry-Sethi Approach

Discussion:
Construction|(naive version): @ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

States: er, re with r nodesof ¢;
Start state: ee;
Final state: ee;
Transitions: for leaves r = we require: (er, x,re).
The leftover transitions are:

r Transitions r | Transitions
e ‘ o (.r: €, ""i} !1 g.?._{ €, _,..)
(o1, €,015) (o1, €,0r)
(""l. E:"".} I_""l.:(:': .Tl)
(r2,€,79) (reers) | Y
ry -1y | (er, €, 0r) r17 | (er e, re)
(Tl.:f:.f?} (.T: E‘,.""L}
(rae,€ o) (rie,€ re)
Berry-Sethi Approach Berry-Sethi Approach
Discussion: Discussion:
@ Most transitions navigate through the expression @ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic @ The resulting automaton is in general nondeterministic
- Strategy for the sophisticated version: > Strategy for the sophisticated version:
Avoid generating e-transitions Avoid generating e-transitions

ldea:

Pre-compute helper attribute D(epth)F(irst)S(earch)!

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

. Strategy for the sophisticated version:
Avoid generating e-transitions

|dea:
Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:

|first| thel set of read states| below r, which may be reached first,
when descending into r.

|next |the set of read states|to the|right of "'I which may be reached
first In the traversal after r.

| Iastlthe| set of read states|below r, which may be reached last
when descending into r.

can the subexpression » consume ¢ ?

Berry-Sethi Approach: 1st step

Implementation:
DFS post-order traversal

for leaves r = we find empty[r] = ‘z=¢).
Otherwise:

empty[ri] V empty[rs]
empty[r; A empty[rz]
t
t

empty[ry | 2]
empty[ry - 72]
empty|r|
empty rq?

Berry-Sethi Approach: 1st step

empty[r] =t ifandonlyif €& [r]

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that
may be reached from e (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr | (er,e, o[i [z]) € 6%,z # €}

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that
may be reached from e+ (i.e. while descending into) via sequences
of e-transitions: firstfr] = {iinr | (er,e, o[i x]) € 4", 2 # €}

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that
may be reached from e (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr | (er e, iz]) € 6", 2 # €}

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that
may be reached from er (i.e. while descending into) via sequences
of e-transitions: firstfr] ={iinr | (er,e,o[iz]) € ", @ # ¢}

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that
may be reached from e (i.e. while descending into) via sequences
of e-transitions: firstfr] = {iinr | (er,e, o[i [z]) € 6%,z # €}

... for example:

Berry-Sethi Approach: 2nd step

Implementation:
DFS post-order traversal

for leaves r = we find first[r] = {i|x # €}.
Otherwise:
firstry | 2] = fir“irst[m]
T -ﬂrst.r-llu first[ry] if
flrst[u . !2] - { first[r-l] if

first[r;] = first[ry]
first[ry7] = first[ry]

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. next[r] = {i | (re,e, o[iz]) € 6", # ¢}

... for example: 012

01

t

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. next[r] = {i | (re,e, o[i [=]) € 0", x # €}

... for example:

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. next[r] = {i| (re,e, o[iz) € 0",z # ¢}

... for example: 012

Berry-Sethi Approach: 3rd step Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which
may be reached last during the traversal of » connected to the root via

Implementation: e-transitions only: last[r] = {iinr | (1= Je,e,70) € 0", @ # €}

DFS pre-order traversal

... for example: 012
For the root, we find: next[e] = 0} f 0
Apart from that we distinguish, based on the context:

| r || Fqualities |
ry | ra || nextfry] = next[r]
nextlrz] = nextr]
o L first[r2] U next[r] if empty[rs] =1
riere || nextin] = { first[ro] if empty[ra] = f
next|ro = next[r]
ri next[r]| = [first[ryJUlnext[r] |
ry? next|ri|| = [next|r| |
Berry-Sethi Approach: 4th step Berry-Sethi Approach: 4th step
The may-set of last reached read states: The set of read states, which The may-set of last reached read states: The set of read states, which
may be reached last during the traversal of » connected to the root via may be reached last during the traversal of » connected to the root via
e-transitions only: last[r] = {iinr | (L] Je,c,re) € 67,0 # €} e-transitions only: last[r] = {iinr | (] x Je,c,r0) € &, x # €}
... for example: 012] ... for example: 012 ?4
f f

Berry-Sethi Approach: 4th step

Implementation:
DFS post-order traversal

for leaves r = we find |last[r] = {i |z #€}.

Otherwise:
last[ry | ra] = |lastry] U last]ro] |
R last]r{] UTast[rs] if empty[r2]|H ¢
lastry 1] = { last[rs] | if empty[ra]|o f
last[r]] = lasfr]
last[ry 7] = last[r

Berry-Sethi Approach

... for example:
L)a
(o)
a | \ N
(! (2]
///{ A ‘.. ;I { A b
\ a7
b ‘\ / ~a
T Oy
Remarks:

@ This construction is known as Berry-Sethi- or
Glushkov-construction.

@ Itis used for XML to define Content Models

@ The result may not be, what we had in mind...

Berry-Sethi Approach: (sophisticated version)

Construct

ion (sophisticated version):

Create an automanton based on the syntax tree’s new attributes:

States

{ec} U {ie | i aleaf}

Start state:

Final states

Transitions:

We call the

eoc

. last[e] if emptyle] = f
{ec} Ulastle] otherwise

(ee,fafie) if i € first[e] and i labled with a.
(to,ja, ') if i’ € next[i] and i’ labled with a.

resulting automaton A..

Chapter 4:
Turning NFAs deterministic

