Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions $(\gamma_1, x, \gamma_2), (\gamma'_1, x', \gamma'_2) \in \delta$ we can assume:
Is γ_1 a suffix of γ'_1, then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

... for example:

```
<table>
<thead>
<tr>
<th>0</th>
<th>a</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>
```

... this obviously holds
Item Pushdown Automaton

Construction: Item Pushdown Automaton M_G^L

- Reconstruct a *Leftmost derivation*.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.

The states are now items $= \{ [A \rightarrow \alpha \bullet \beta] \}$...

The bullet marks the spot, how far the rule is already processed.

Our example:

$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$

Item Pushdown Automaton – Example

Our example:

$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$

Item Pushdown Automaton – Example

Our example:

$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$
Item Pushdown Automaton – Example

Our example:

\[S \rightarrow A B \quad A \rightarrow a \quad B \rightarrow b \]

![Diagram of an automaton](image)

Item Pushdown Automaton

The item pushdown automaton \(M_k \) has three kinds of transitions:

Expansions:

\[([A \rightarrow a \bullet B \beta], \epsilon, [A \rightarrow a \bullet B \beta], B \rightarrow \gamma) \]

for

\[A \rightarrow a B \beta, B \rightarrow \gamma \in P \]

Shifts:

\[([A \rightarrow a \bullet a \beta], \epsilon, [A \rightarrow a \bullet \beta]) \]

for

\[A \rightarrow a a \beta \in P \]

Reduces:

\[([A \rightarrow a \bullet B \beta], B \rightarrow \gamma, \epsilon, [A \rightarrow a B \bullet \beta]) \]

for

\[A \rightarrow a B \beta, B \rightarrow \gamma \in P \]

Items of the form: \([A \rightarrow a \bullet] \) are also called complete

The item pushdown automaton shifts the bullet around the derivation tree ...

Item Pushdown Automaton – Example

We add another rule \(S' \rightarrow S \) for initialising the construction:

- **Start state:** \([S' \rightarrow \bullet S] \)
- **End state:** \([S' \rightarrow S \bullet] \)
- **Transition relations:**

\[
\begin{align*}
&[S' \rightarrow \bullet S] \quad \epsilon \quad [S' \rightarrow \bullet S] \\
&S \rightarrow \bullet AB \quad \epsilon \quad S \rightarrow \bullet AB \quad [A \rightarrow \bullet a] \\
&A \rightarrow \bullet a \quad \epsilon \quad A \rightarrow \bullet a \\
&S \rightarrow \bullet AB \quad [A \rightarrow \bullet a] \quad \epsilon \quad S \rightarrow \bullet AB \quad [A \rightarrow \bullet a] \\
&B \rightarrow \bullet b \quad \epsilon \quad B \rightarrow \bullet b \\
&S \rightarrow \bullet AB \quad \epsilon \quad S \rightarrow \bullet AB \\
&S' \rightarrow \bullet S \quad \epsilon \quad S' \rightarrow \bullet S
\end{align*}
\]

Discussion:

- The expansions of a computation form a leftmost derivation.
- Unfortunately, the expansions are chosen nondeterministically.

- For proving correctness of the construction, we show that for every item \([A \rightarrow a \bullet B \beta] \) the following holds:

\[
([A \rightarrow a \bullet B \beta], w) \vdash^* ([A \rightarrow a B \bullet \beta], \epsilon) \quad \text{iff} \quad B \vdash^* w
\]

- LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...
Item Pushdown Automaton

Example: $S \rightarrow e \mid a S b$

The transitions of the according Item Pushdown Automaton:

<table>
<thead>
<tr>
<th>#</th>
<th>Transition</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$S' \rightarrow \bullet S$</td>
<td>ϵ</td>
</tr>
<tr>
<td>1</td>
<td>$S' \rightarrow \bullet S$</td>
<td>ϵ</td>
</tr>
<tr>
<td>2</td>
<td>$S \rightarrow \bullet a S b$</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>$S \rightarrow a \bullet S b$</td>
<td>ϵ</td>
</tr>
<tr>
<td>4</td>
<td>$S \rightarrow a \bullet S b$</td>
<td>ϵ</td>
</tr>
<tr>
<td>5</td>
<td>$S \rightarrow a S b \rightarrow \bullet$</td>
<td>ϵ</td>
</tr>
<tr>
<td>6</td>
<td>$S \rightarrow a S b \rightarrow a S b \bullet$</td>
<td>ϵ</td>
</tr>
<tr>
<td>7</td>
<td>$S \rightarrow a S b \rightarrow b$</td>
<td>$S \rightarrow a S b \bullet$</td>
</tr>
<tr>
<td>8</td>
<td>$S' \rightarrow \bullet S \rightarrow \bullet$</td>
<td>ϵ</td>
</tr>
<tr>
<td>9</td>
<td>$S' \rightarrow \bullet S \rightarrow a S b \bullet$</td>
<td>ϵ</td>
</tr>
</tbody>
</table>

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.
Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbol.

Structure of the $LL(1)$-Parser:

- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table $M[i, w]$ contains the rule of choice.

Topdown Parsing

Idea:
- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- A grammar is called $LL(1)$ if a unique choice is always possible

Definition:
A reduced grammar is called $LL(1)$, if for each two distinct rules $A \rightarrow x \in P$, $A \rightarrow y \in P$ and each derivation $S \rightarrow^*_\gamma u$, with $u \in T^*$ the following is valid:

$$\text{First}_x(\gamma) \cap \text{First}_y(\gamma) = \emptyset$$
Topdown Parsing

Example 1:

\[S \rightarrow \begin{cases} \text{if} & (E) S \text{ else } S \mid \\
\text{while} & (E) S \mid \\
E \end{cases} \]

\[E \rightarrow \text{id} \]

is \(LL(1) \), since \(\text{First}_1(E) = \{\text{id}\} \)

Lookahead Sets

Definition: First₁-Sets

For a set \(L \subseteq T^* \) we define:

\[\text{First}_1(L) = \{ \epsilon \mid \epsilon \in L \} \cup \{ u \in T \mid \exists v \in T^* : uv \in L \} \]

Example: \(S \rightarrow \epsilon \mid a \ S \ b \)

\[
\begin{array}{c|c|c}
\text{First}_1(S) \\
\hline
\epsilon & \epsilon, a \\
ab & a \\
a a b b & a a b b \\
a a a b b & \ldots \\
\end{array}
\]

\(\equiv \) the yield’s prefix of length \(1 \)
Lookahead Sets

Arithmetics:
First(_X) is compatible with union and concatenation:

First(_X) = ∅
First(_X \cup _Y) = First(_X) \cup First(_Y)
First(_X \cdot _Y) = First(First(_X) \cdot First(_Y))

○ being 1 – concatenation

Lookahead Sets

For α ∈ (N \cup T)^* we are interested in the set:

First(_X) = First(_X)\{w ∈ T^* | α →^* w\}

Idea: Treat ε separately: First(_X) = F_ε(_X) \cup \{ε | \alpha \rightarrow^* ε\}

- Let empty(X) = true if X →^* ε
- F_ε(X_1 \ldots X_m) = \bigcup_{i=1}^{m} F_ε(X_i) if \bigwedge_{i=1}^{m} empty(X_i)

Lookahead Sets

Arithmetics:
First(_X) is compatible with union and concatenation:

First(_X) = ∅
First(_X \cup _Y) = First(_X) \cup First(_Y)
First(_X \cdot _Y) = First(First(_X) \cdot First(_Y))

○ being 1 – concatenation

Definition: 1-concatenation

Let L_1, L_2 ⊆ T \cup \{ε\} with L_1 \neq \emptyset \neq L_2. Then:

L_1 \odot L_2 = \begin{cases} L_1 \setminus \{ε\} \cup L_2 & \text{if } ε \notin L_1 \\ L_2 & \text{otherwise} \end{cases}

If all rules of G are productive, then all sets First(_X) are non-empty.

Lookahead Sets

For α ∈ (N \cup T)^* we are interested in the set:

First(_X) = First(_X)\{w ∈ T^* | α →^* _X\}

Idea: Treat ε separately: First(_X) = F_ε(_X) \cup \{ε | \alpha \rightarrow^* _X\}

- Let empty(X) = true if X →^* ε
- F_ε(X_1 \ldots X_m) = \bigcup_{i=1}^{m} F_ε(X_i) if \bigwedge_{i=1}^{m} empty(X_i)

We characterize the ε-free First(_X) sets with an inequality system:

\begin{align*}
F_ε(a) &= \{a\} \quad \text{if } a \in T \\
F_ε(A) &\geq F_ε(X_i) \quad \text{if } A \rightarrow X_1 \ldots X_m \in P, \\bigwedge_{i=1}^{m} empty(X_i)
\end{align*}
for example...

$E \rightarrow E + T \mid T$

$T \rightarrow T * F \mid F$

$F \rightarrow (E) \mid \text{name} \mid \text{int}$

with $\text{empty}(E) = \text{empty}(T) = \text{empty}(F) = \text{false}$

... we obtain:

$F_*(S') \supseteq F_*(E)$

$F_*(E) \supseteq F_*(F)$

$\{ \text{name}, \text{int} \}$

for example...

$E \rightarrow E + T \mid T$

$T \rightarrow T * F \mid F$

$F \rightarrow (E) \mid \text{name} \mid \text{int}$

with $\text{empty}(E) = \text{empty}(T) = \text{empty}(F) = \text{false}$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$\text{First}_1(\alpha) = \text{First}_1(\{ w \in T^* \mid \alpha \rightarrow^* w \})$

Idea: Treat ϵ separately: $\text{First}_1(A) = F_*(A) \cup \{ \epsilon \mid A \rightarrow^* \epsilon \}$

- Let $\text{empty}(X) = \text{true}$ iff $X \rightarrow^* \epsilon$.
- $F_*(X_1 \ldots X_m) = \bigcup_{i=1}^m F_*(X_i)$ if $\bigwedge_{i=1}^{m-1} \text{empty}(X_i)$

We characterize the ϵ-free First_1-sets with an inequality system:

$F_*(a) = \{ a \}$ if $a \in T$

$F_*(A) \supseteq F_*(X)$ if $A \rightarrow X_1 \ldots X_m \in P$,

$\bigwedge_{i=1}^{m-1} \text{empty}(X_i)$
Fast Computation of Lookahead Sets

Observation:
- The form of each inequality of these systems is:
 \[x \geq y \quad \text{resp.} \quad x \trianglerighteq d \]
 for variables \(x, y \) und \(d \in D \).
- Such systems are called pure unification problems.
- Such problems can be solved in linear space/time.
 for example:
 \[D = \{a,b,c\} \]

\[
\begin{align*}
 x_0 & \geq \{a\} \\
 x_1 & \geq \{b\} \\
 x_2 & \geq \{c\} \\
 x_3 & \geq \{c\}
\end{align*}
\]

Proceeding:
- Create the Variable Dependency Graph for the inequality system.

Proceeding:
- Create the Variable Dependency Graph for the inequality system.
- Within a Strongly Connected Component (\(\rightarrow \) Tarjan) all variables have the same value.
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC.
Fast Computation of Lookahead Sets

Proceeding:
- Create the Variable Dependency Graph for the inequality system.
- Within a Strongly Connected Component (→ Tarjan) all variables have the same value.
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC.

Fast Computation of Lookahead Sets

... for our example grammar:

First₁:

```
S' → E T
E → , int, name
T → , int, name
```

Item Pushdown Automaton as LL(1)-Parser

back to the example: \(S \rightarrow e \mid a S b \)

The transitions in the according Item Pushdown Automaton:

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(S' \rightarrow \bullet S)</td>
<td>(e)</td>
</tr>
<tr>
<td>1</td>
<td>(S' \rightarrow \bullet S)</td>
<td>(e)</td>
</tr>
<tr>
<td>2</td>
<td>(S \rightarrow a S b)</td>
<td>(a)</td>
</tr>
<tr>
<td>3</td>
<td>(S \rightarrow a S b)</td>
<td>(e)</td>
</tr>
<tr>
<td>4</td>
<td>(S \rightarrow a S b)</td>
<td>(e)</td>
</tr>
<tr>
<td>5</td>
<td>(S \rightarrow a S b)</td>
<td>(e)</td>
</tr>
<tr>
<td>6</td>
<td>(S \rightarrow a S b)</td>
<td>(e)</td>
</tr>
<tr>
<td>7</td>
<td>(S \rightarrow a S b)</td>
<td>(b)</td>
</tr>
<tr>
<td>8</td>
<td>(S' \rightarrow \bullet S)</td>
<td>(e)</td>
</tr>
<tr>
<td>9</td>
<td>(S' \rightarrow \bullet S)</td>
<td>(e)</td>
</tr>
</tbody>
</table>

Conflicts arise between transitions \((0, 1)\) or \((3, 4)\) resp.
Item Pushdown Automaton as LL(1)-Parser

... in detail: \[S \rightarrow e^0 \mid a \, S \, b^1 \]

<table>
<thead>
<tr>
<th>First$_1$ (input)</th>
<th>e</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Inequality system for Follow$_1(B) = \text{First}$_1(\beta) \circ \ldots \circ \text{First}$_1(\beta_0)

\[
\begin{align*}
\text{Follow}_1(S) & \supseteq \{\epsilon\} \\
\text{Follow}_1(B) & \supseteq F_e(X_1) \quad \text{if} \quad A \rightarrow \alpha \, B \, X_1 \ldots \, X_m \in P, \\
& \text{empty}(X_1) \land \ldots \land \text{empty}(X_{j-1}) \\
& \land \text{empty}(X_j) \land \ldots \land \text{empty}(X_m) \\
\text{Follow}_1(A) & \supseteq \text{Follow}_1(A) \quad \text{if}
\end{align*}
\]
Item Pushdown Automaton as LL(1)-Parser

Is \(G \) an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set \(M[B, w] = i \) with \(B \rightarrow \gamma^i \) exactly if

- \(S' \rightarrow \gamma^i u B \beta \)
- \(w \in \text{First}_1(\gamma) \odot \text{Follow}_1(\beta) \)

... for example: \(S \rightarrow \epsilon^0 \mid a S b^1 \)

First_1(S) = \{\epsilon, a\}

Follow_1(S) = \{b, \epsilon\}
Item Pushdown Automaton as LL(1)-Parser

Is \(G \) an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set \(M[B, w] = i \) with \(B \rightarrow \gamma \) exactly if

- \(S' \rightarrow_1 u B \beta \)
- \(w \in \text{First}_1(\gamma) \cap \text{Follow}_1(\beta) \)

... for example:

\[
S \rightarrow \epsilon^1 \mid a S b^1
\]

\(\text{First}_1(S) = \{ \epsilon, a \} \quad \text{Follow}_1(S) = \{ b, \epsilon \} \)

\(S \)-rule 0:

\[
\begin{array}{c|c|c}
\text{First}_1(\epsilon) & \cap & \text{Follow}_1(S) = \{ b, \epsilon \} \\
\hline
S & 0 & 1 \end{array}
\]

\(S \)-rule 1:

\[
\begin{array}{c|c|c}
\text{First}_1(a S b) & \cap & \text{Follow}_1(S) = \{ a \} \\
\hline
S' & 1 & 0 \end{array}
\]

For example:

\[
S \rightarrow \epsilon^1 \mid a S b^1
\]

The transitions of the according Item Pushdown Automaton:

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(S' \rightarrow \epsilon)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>1</td>
<td>(S' \rightarrow S)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>2</td>
<td>(S \rightarrow a S b)</td>
<td>(a)</td>
</tr>
<tr>
<td>3</td>
<td>(S \rightarrow a)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>4</td>
<td>(S \rightarrow a b)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>5</td>
<td>(S \rightarrow a S b)</td>
<td>(b)</td>
</tr>
<tr>
<td>6</td>
<td>(S \rightarrow a S b)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>7</td>
<td>(S \rightarrow a S b)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>8</td>
<td>(S' \rightarrow S)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>9</td>
<td>(S' \rightarrow S)</td>
<td>(\epsilon)</td>
</tr>
</tbody>
</table>

Lookahead table:

<table>
<thead>
<tr>
<th>Lookahead</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>1</td>
</tr>
<tr>
<td>(a)</td>
<td>1</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\epsilon)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(S)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(b)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

- A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea.
- However, only a subset of the deterministic contextfree languages can be parsed this way.

Discussion

- A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea.
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- The size of the occurring sets is rapidly increasing with larger \(k \).
- Unfortunately, even \(LL(k) \) parsers are not sufficient to accept all deterministic contextfree languages.
- In practical systems, this often motivates the implementation of \(k = 1 \) only...
Chapter 4:
Bottom-up Analysis