In linear time from Regular Expressions to NFAs

Thompson’s Algorithm
Produces \(O(n) \) states for regular expressions of length \(n \).

Berkeley-Sethi Approach

Berry-Sethi Approach

Berry-Sethi Algorithm
Produces exactly \(n + 1 \) states without \(\epsilon \)-transitions and demonstrates \(\rightarrow \text{Equality Systems} \) and \(\rightarrow \text{Attribute Grammars} \)

Glushkov Algorithm
Produces exactly \(n + 1 \) states without \(\epsilon \)-transitions and demonstrates \(\rightarrow \text{Equality Systems} \) and \(\rightarrow \text{Attribute Grammars} \)

Idea:
The automaton tracks (conventionally via a marker "*"), in the syntax tree of a regular expression, which subexpressions in \(\epsilon \) are reachable consuming the rest of input \(w \).
Berry-Sethi Approach

... for example:

\[(a|b)^*a(a|b)\]

![Diagram](image)

Berry-Sethi Approach

... for example:

\[w = \emptyset baa :\]

![Diagram](image)
Berry-Sethi Approach

... for example:

\[w = \ldots a \]

\[\begin{array}{c}
\ast \\
\ast \\
\ast
\end{array}
\]

\[\begin{array}{c}
a \\
b \\
a \\
b
\end{array}
\]

Berry-Sethi Approach

... for example:

\[w = a \]

\[\begin{array}{c}
\ast \\
\ast \\
\ast
\end{array}
\]

\[\begin{array}{c}
a \\
b \\
a \\
b
\end{array}
\]

Berry-Sethi Approach

... for example:

\[w = \ldots \]

\[\begin{array}{c}
\ast \\
\ast \\
\ast
\end{array}
\]

\[\begin{array}{c}
a \\
b \\
a \\
b
\end{array}
\]

Berry-Sethi Approach

... for example:

\[w = \ldots \]

\[\begin{array}{c}
\ast \\
\ast \\
\ast
\end{array}
\]

\[\begin{array}{c}
a \\
b \\
a \\
b
\end{array}
\]
Berry-Sethi Approach

In general:

- Input is only consumed at the leaves.
- Navigating the tree does not consume input \(\rightarrow \epsilon \)-transitions
- For a formal construction we need identifiers for states.
- For a node \(n \)'s identifier we take the subexpression, corresponding to the subtree dominated by \(n \).
- There are possibly identical subexpressions in one regular expression.

\[\text{we enumerate the leaves ...} \]

... for example:

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]
```
Berry-Sethi Approach (naive version)

Construction (naive version):

States: $\bullet r, \bullet e$ with r nodes of e;
Start state: $\bullet e$;
Final state: $\bullet e$;
Transitions: for leaves $r \equiv l \mid x$ we require: $(\bullet r, x, \bullet e)$.
The leftover transitions are:

<table>
<thead>
<tr>
<th>r</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1 \mid r_2$</td>
<td>$(\bullet r, e, \bullet r_1)$, $(\bullet r, e, \bullet r_2)$, $(\bullet r_1, e, \bullet r_1)$, $(\bullet r_2, e, \bullet r)$</td>
</tr>
</tbody>
</table>

Berry-Sethi Approach

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

⇒ Strategy for the sophisticated version: Avoid generating ϵ-transitions

Berry-Sethi Approach (naive version)

Construction (naive version):

States: $\bullet r, \bullet e$ with r nodes of e;
Start state: $\bullet e$;
Final state: $\bullet e$;
Transitions: for leaves $r \equiv l \mid x$ we require: $(\bullet r, x, \bullet e)$.
The leftover transitions are:

<table>
<thead>
<tr>
<th>r</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1 \mid r_2$</td>
<td>$(\bullet r, e, \bullet r_1)$, $(\bullet r, e, \bullet r_2)$, $(\bullet r_1, e, \bullet r_1)$, $(\bullet r_2, e, \bullet r)$</td>
</tr>
</tbody>
</table>

| $r_1 \mid r_2$ | $(\bullet r, e, \bullet r_1)$, $(\bullet r, e, \bullet r_2)$, $(\bullet r_1, e, \bullet r_1)$, $(\bullet r_2, e, \bullet r)$ |
Berry-Sethi Approach

Discussion:
- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

⇒ Strategy for the sophisticated version:
Avoid generating ϵ-transitions

Idea:
Pre-compute helper attributes during $D(\text{depth})F(\text{first})S(\text{search})$!

Berry-Sethi Approach: 1st step

$\text{empty}[r] = t$ if and only if $\epsilon \in [r]$

... for example:

```
  * 0
d 2
d 1
```

Berry-Sethi Approach: 1st step

$\text{empty}[r] = t$ if and only if $\epsilon \in [r]$

... for example:

```
  * 0
d 2
d 1
```

Necessary node-attributes:

- **first** the set of read states below r, which may be reached first, when descending into r.
- **next** the set of read states to the right of r, which may be reached first in the traversal after r.
- **last** the set of read states below r, which may be reached last when descending into r.
- **empty** can the subexpression r consume ϵ?
Berry-Sethi Approach: 1st step

\[\text{empty}[r] = \top \text{ if and only if } \epsilon \in [r] \]

... for example:

```
      f
     / \
    *   *
   /   /   \
  f   f   f
  /   /   /   \   \  \
 f   f   f   2   3   4
  /   /   /   /   /   /   \
 f   f   f   0   1   3   4
```

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from \(\bullet r \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[\text{first}[r] = \{ i \in r \mid (\bullet r, \epsilon, i, x) \in \delta^*, x \neq \epsilon \} \]

... for example:

```
      f
     / \
    *   *
   /   /   \
  f   f   f
  /   /   /   \   \  \
 f   f   f   2   3   4
  /   /   /   /   /   /   \
 f   f   f   0   1   3   4
```

Implementation:

DFS post-order traversal

for leaves \(r = [x] \) we find \(\text{empty}[r] = (x = \epsilon) \).

Otherwise:

\[
\begin{align*}
\text{empty}[r \cup r_2] &= \text{empty}[r] \lor \text{empty}[r_2] \\
\text{empty}[r \cdot r_2] &= \text{empty}[r] \land \text{empty}[r_2] \\
\text{empty}[r_1] &= \top \\
\text{empty}[r_1?] &= \top
\end{align*}
\]

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from \(\bullet r \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[\text{first}[r] = \{ i \in r \mid (\bullet r, \epsilon, i, x) \in \delta^*, x \neq \epsilon \} \]

... for example:

```
      f
     / \
    *   *
   /   /   \
  f   f   f
  /   /   /   \   \  \
 f   f   f   2   3   4
  /   /   /   /   /   /   \
 f   f   f   0   1   3   4
```
Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from \(\star \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[
\text{first}[r] = \{ i \in r \mid (\star, \epsilon, i, x) \in \delta, x \neq \epsilon \}
\]

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from \(\star \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[
\text{first}[r] = \{ i \in r \mid (\star, \epsilon, i, x) \in \delta, x \neq \epsilon \}
\]

... for example:

Implementation:

DFS post-order traversal

For leaves \(r = \{ x \} \) we find \(\text{first}[r] = \{ i \mid x \neq \epsilon \} \).

Otherwise:

\[
\begin{align*}
\text{first}[r_1 \cdot r_2] &= \text{first}[r_1] \cup \text{first}[r_2] \\
\text{first}[r_1 | r_2] &= \begin{cases}
\text{first}[r_1] \cup \text{first}[r_2] & \text{if empty}(r_1) = i \\
\text{first}[r_1] & \text{if empty}(r_1) = \not{\exists} i
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{first}[r_1 \cdot | r_2] &= \text{first}[r_1] \\
\text{first}[r_1 | r_2] &= \text{first}[r_1]
\end{align*}
\]
Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of r^*, that may be reached next via sequences of ϵ-transitions.

$\text{next}[r] = \{ i \mid \langle r^* \epsilon, \epsilon, \epsilon \rangle \in \delta^*, x \neq \epsilon \}$

... for example:

```
      012
     /   \
01 ---+--- 2
 |     |   |
01 f  2 f 3 f
0 f   2 f 3 f
0 a   2 a 3 a
```

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of r^*, that may be reached next via sequences of ϵ-transitions.

$\text{next}[r] = \{ i \mid \langle r^* \epsilon, \epsilon, \epsilon \rangle \in \delta^*, x \neq \epsilon \}$

... for example:

```
      012
     /   \
01 ---+--- 2
 |     |   |
01 f  2 f 3 f
0 f   2 f 3 f
0 a   2 a 3 a
```

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of r^*, that may be reached next via sequences of ϵ-transitions.

$\text{next}[r] = \{ i \mid \langle r^* \epsilon, \epsilon, \epsilon \rangle \in \delta^*, x \neq \epsilon \}$

... for example:

```
      012
     /   \
01 ---+--- 2
 |     |   |
01 f  2 f 3 f
0 f   2 f 3 f
0 a   2 a 3 a
```

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of r^*, that may be reached next via sequences of ϵ-transitions.

$\text{next}[r] = \{ i \mid \langle r^* \epsilon, \epsilon, \epsilon \rangle \in \delta^*, x \neq \epsilon \}$

... for example:

```
      012
     /   \
01 ---+--- 2
 |     |   |
01 f  2 f 3 f
0 f   2 f 3 f
0 a   2 a 3 a
```
Berry-Sethi Approach: 3rd step

The *may-set* of next read states: The set of read states within the subtrees right of \(r \), that may be reached next via sequences of \(\epsilon \)-transitions.
\[
\text{next}\{r\} = \{ i \mid (r, \epsilon, i, x) \in \delta^*, x \neq \epsilon \}
\]

... for example:

```
      *  
     /   
    *    
   /     
  01    01 
   /     / 
  f     f  
```

Berry-Sethi Approach: 4th step

The *may-set* of last reached read states: The set of read states, which may be reached last during the traversal of \(r \) connected to the root via \(\epsilon \)-transitions only:
\[
\text{last}\{r\} = \{ i \in r \mid (i, x, \epsilon, r) \in \delta^*, x \neq \epsilon \}
\]

... for example:

```
      *  
     /   
    *    
   /     
  01    01 
   /     / 
  f     f  
```

Implementation:
DFS pre-order traversal

For the root, we find:
\[
\text{next}\{r\} = \emptyset
\]

Apart from that we distinguish, based on the context:

<table>
<thead>
<tr>
<th>(r)</th>
<th>Equalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(\text{next}{r_1} = \text{next}{r})</td>
</tr>
<tr>
<td>(r_2)</td>
<td>(\text{next}{r_2} = \text{next}{r})</td>
</tr>
</tbody>
</table>
| \(r_1 \cdot r_2 \) | \(\text{next}\{r_1 \cdot r_2\} = \text{first}\{r_1\} \cup \text{next}\{r\} \) if \(\text{empty}\{r_2\} = t \)
\[
\text{next}\{r_2\} = \text{next}\{r\}
\]
| \(r_1 \cdot r_2 \) | \(\text{next}\{r_1 \cdot r_2\} = \text{first}\{r_1\} \cup \text{next}\{r\} \) if \(\text{empty}\{r_2\} = f \) |
| \(r_1 \cdot r_2 \) | \(\text{next}\{r_1 \cdot r_2\} = \text{next}\{r\} \) |
| \(r_1 \) | \(\text{next}\{r_1\} = \text{first}\{r\} \cup \text{next}\{r\} \) |

Berry-Sethi Approach: 4th step

The *may-set* of last reached read states: The set of read states, which may be reached last during the traversal of \(r \) connected to the root via \(\epsilon \)-transitions only:
\[
\text{last}\{r\} = \{ i \in r \mid (i, x, \epsilon, r) \in \delta^*, x \neq \epsilon \}
\]

... for example:

```
      *  
     /   
    *    
   /     
  01    01 
   /     / 
  f     f  
```

```
      *  
     /   
    *    
   /     
  01    01 
   /     / 
  f     f  
```
Berry-Sethi Approach: 4th step

Implementation:

DFS *post-order* traversal

for leaves \(r = \{ i | x \neq e \} \) we find \(\text{last}[r] = \{ i | x \neq e \} \).

Otherwise:

\[
\begin{align*}
\text{last}[r_1 \cdot r_2] &= \text{last}[r_1] \cup \text{last}[r_2] \\
\text{last}[r] &= \begin{cases}
\text{last}[r_1] \cup \text{last}[r_2] & \text{if empty}[r_2] = i \\
\text{last}[r_2] & \text{if empty}[r_1] = i
\end{cases}
\end{align*}
\]

Berry-Sethi Approach

... for example:

![Diagram](image)

Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version): Create an automaton based on the syntax tree’s new attributes:

States: \(\{ \ast \} \cup \{ i | i \text{ a leaf} \} \)

Start state: \(\ast \)

Final states: \(\text{last}[e] \) \(i \) \(\text{if empty}[e] = i \)

\(\{ \ast \} \cup \text{last}[e] \) \(\text{if empty}[e] = \ast \)

Transitions:

- \(\ast - a - i \) if \(i \in \text{first}[e] \) and \(i \) labeled with \(a \).
- \(\ast - a - i \) if \(i \in \text{next}[e] \) and \(i \) labeled with \(a \).

We call the resulting automaton \(A_c \).

The expected outcome:

![Diagram](image)

Remarks:

- ideal automaton would be even more compact
- but Berry-Sethi is rather directly constructed
- Anyway, we need a deterministic version

\(\Rightarrow \) Powerset-Construction
Berry-Sethi Approach

... for example:

Remarks:
- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

The expected outcome:

Remarks:
- ideal automaton would be even more compact
- but Berry-Sethi is rather directly constructed
- Anyway, we need a deterministic version

⇒ Powerset-Construction

Lexical Analysis

Chapter 4:

Turning NFAs deterministic

Powerset Construction

... for example:
Powerset Construction

... for example:

Powerset Construction

... for example:

Theorem:

For every non-deterministic automaton \(A = (Q, \Sigma, \delta, I, F) \) we can compute a deterministic automaton \(\mathcal{P}(A) \) with

\[
\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))
\]
Powerset Construction

Theorem:
For every non-deterministic automaton \(A = (Q, \Sigma, \delta, I, F) \) we can compute a deterministic automaton \(\mathcal{P}(A) \) with
\[
\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))
\]

Construction:

- **States:** Powersets of \(Q \);
- **Start state:** \(I \);
- **Final states:** \(\{Q' \subseteq Q \mid Q' \cap F \neq \emptyset\} \);
- **Transitions:**
 \[
 \delta_P(Q', a) = \{ q \in Q \mid \exists p \in Q': [p, a, q] \in \delta \}.
 \]

Powerset Construction

Bummer!
There are exponentially many powersets of \(Q \)

- Idea: Consider only contributing powersets. Starting with the set \(Q_P = \{I\} \) we only add further states by need ...
- i.e., whenever we can reach them from a state in \(Q_P \)
- Even though, the resulting automaton can become enormously huge
 ... which is (sort of) not happening in practice

- Therefore, in tools like grep a regular expression's DFA is never created!
- Instead, only the sets, directly necessary for interpreting the input are generated while processing the input

... for example:

```plaintext
0 b 1 a
a 2 a
b 3 a
b a
```

Powerset Construction

Bummer!
There are exponentially many powersets of \(Q \)

- Idea: Consider only contributing powersets. Starting with the set \(Q_P = \{I\} \) we only add further states by need ...
- i.e., whenever we can reach them from a state in \(Q_P \)
- Even though, the resulting automaton can become enormously huge
 ... which is (sort of) not happening in practice

- Therefore, in tools like grep a regular expression's DFA is never created!
- Instead, only the sets, directly necessary for interpreting the input are generated while processing the input

```plaintext
0 2 3
b a
```
Powerset Construction

... for example:

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{a} \\
\text{b}
\end{array}
\]

\[
\begin{array}{c}
\text{0} \\
\text{2} \\
\text{1} \\
\text{4}
\end{array}
\]

\[
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array}
\]

\[
\begin{array}{c}
\text{b} \\
\text{b} \\
\text{a} \\
\text{b}
\end{array}
\]

\[
\begin{array}{c}
\text{02} \\
\text{023} \\
\text{1} \\
\text{14}
\end{array}
\]

Powerset Construction

... for example:

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{a} \\
\text{b}
\end{array}
\]

\[
\begin{array}{c}
\text{0} \\
\text{2} \\
\text{1} \\
\text{4}
\end{array}
\]

\[
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array}
\]

\[
\begin{array}{c}
\text{b} \\
\text{b} \\
\text{a} \\
\text{b}
\end{array}
\]

\[
\begin{array}{c}
\text{02} \\
\text{023} \\
\text{1} \\
\text{14}
\end{array}
\]

Remarks:

- For an input sequence of length \(n \), maximally \(O(n) \) sets are generated.
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.
Powerset Construction

... for example:

\[a \ b \ a \ b \]

Remarks:

- For an input sequence of length \(n \), maximally \(O(n) \) sets are generated.
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Lexical Analysis

Chapter 5:

Scanner design