Chapter 3: Converting Regular Expressions to NFAs

In linear time from Regular Expressions to NFAs

Berry-Sethi Approach

Berry-Sethi Algorithm
Produces exactly \(n + 1 \) states without \(\epsilon \)-transitions and demonstrates \(\rightarrow \) Equality Systems and \(\rightarrow \) Attribute Grammars

Idea:
The automaton tracks (conceptionally via a marker \(\ast \)), in the syntax tree of a regular expression, which subexpressions in \(\varphi \) are reachable consuming the rest of input \(w \).

Thompson's Algorithm
Produces \(O(n) \) states for regular expressions of length \(n \).
... for example:

\[(a|b)^*a(a|b)\]

... for example:

\[w = bbab : \]

... for example:

\[w = bbab : \]
... for example:

\[w = baaba : \]

... for example:

\[w = aa : \]

... for example:

\[w = aa : \]

... for example:

\[w = aa : \]
Berry-Sethi Approach

... for example:

\[w = \]

In general:

- Input is only consumed by the leaves.
- Navigation in the tree is done without consuming input, i.e. via \(\epsilon\)-transition.
- For a formal construction we need identifiers for states.
- Therefore we use the subexpression, corresponding to the subtree, dominated by the particular node.
- There are possibly identical subexpressions in one regular expression.

we enumerate the leaves...
Berry-Sethi Approach

In general:
- Input is only consumed by the leaves.
- Navigation in the tree is done without consuming input, i.e. via ε-transition.
- For a formal construction we need identifiers for states.
- Therefore we use the subexpression, corresponding to the subtree, dominated by the particular node.
- There are possibly identical subexpressions in one regular expression.

⇒ we enumerate the leaves ...

Berry-Sethi Approach

... for example:

Berry-Sethi Approach (naive version)

Construction (naive version):

States: \(\cdot r, r \cdot \) with \(r \) nodes of \(\varepsilon \);
Start state: \(\cdot r \);
Final state: \(r \cdot \);
Transitions: for leaves \(r = [\text{a}] \) we require: \([\varepsilon] \leftarrow [\varepsilon, r] \) \(r \)

The leftover transitions are:

<table>
<thead>
<tr>
<th>(r)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
<tr>
<td>(r_2)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(r_1 \cdot r_2)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(r_1^*)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1^*)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
<tr>
<td>(r_1^*)</td>
<td>({ \cdot r, r \cdot })</td>
</tr>
</tbody>
</table>
Berry-Sethi Approach

... for example:

![Tree Diagram]

Berry-Sethi Approach

Discussion:
- Most transitions navigate through the expression
- The resulting automaton is in general **nondeterministic**

Berry-Sethi Approach (naive version)

Construction (naive version):

- **States**: \(r, r^* \) with \(r \) nodes of \(e \);
- **Start state**: \(e^* \);
- **Final state**: \(e^* \);
- **Transitions**: for leaves \(r \equiv [I] \) we require: \((e, x, r^*)\).

The leftover transitions are:

<table>
<thead>
<tr>
<th>(r)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>((e, e, r_1))</td>
</tr>
<tr>
<td>(r_2)</td>
<td>((e, e, r_2))</td>
</tr>
<tr>
<td>(r_1 \cdot r_2)</td>
<td>((e, e, r_1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(r)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>((e, e, r_1))</td>
</tr>
<tr>
<td>(r_2)</td>
<td>((e, e, r_2))</td>
</tr>
</tbody>
</table>

Berry-Sethi Approach

Discussion:
- Most transitions navigate through the expression
- The resulting automaton is in general **nondeterministic**

Strategy for the sophisticated version:
Avoid generating \(e \)-transitions
Berry-Sethi Approach

Discussion:
- Most transitions navigate through the expression
- The resulting automaton is in general **nondeterministic**

⇒ **Strategy for the sophisticated version:**
Avoid generating ϵ-transitions

Necessary node-attributes:
- `empty` can the subexpression r consume ϵ?
- `first` the set of read states below r, which **may** be reached **first**, when descending into r.
- `next` the set of read states on the right of r, which **may** be reached **first** in the traversal **after** r.
- `last` the set of read states below r, which **may** be reached **last** when descending into r.

Berry-Sethi Approach: 1st step

$\text{empty}[r] = t$ if and only if $\epsilon \in [r]$

... for example:
Berry-Sethi Approach: 1st step

\[\text{empty}[r] = t \text{ if and only if } \epsilon \in [r] \]

... for example:

![Diagram 1](image1)

Berry-Sethi Approach: 2nd step

\[\text{empty}[r] = t \text{ if and only if } \epsilon \in [r] \]

... for example:

![Diagram 2](image2)

Implementation:

DFS (Post-order traversal)

for leaves \(r = [1, x] \) we find \(\text{empty}[r] = (x = \epsilon) \).

Otherwise:

\[
\begin{align*}
\text{empty}[r_1 | r_2] &= \text{empty}[r_1] \lor \text{empty}[r_2] \\
\text{empty}[r_1 \cdot r_2] &= \text{empty}[r_1] \land \text{empty}[r_2] \\
\text{empty}[r_1?] &= t \\
\text{empty}[r_1.?] &= t
\end{align*}
\]
Berry-Sethi Approach: 1st step

\[\text{empty}[r] = t \quad \text{if and only if} \quad \varepsilon \in [r] \]

... for example:

The set of read states, that may be reached from \(r \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[\text{first}[r] = \{ i \in r \mid (r, \epsilon, i \xrightarrow{\epsilon} x) \in \delta^*, x \neq \varepsilon \} \]

... for example:

Berry-Sethi Approach: 2nd step

Implementation:

DFS post-order traversal

For leaves \(r = \text{[leaf]} \), we find \(\text{empty}[r] = (x = \varepsilon) \).

Otherwise:

\[
\begin{align*}
\text{empty}[r_1 \upharpoonright r_2] &= \text{empty}[r_1] \lor \text{empty}[r_2] \\
\text{empty}[r_1 \cdot r_2] &= \text{empty}[r_1] \land \text{empty}[r_2] \\
\text{empty}[r_1 ?] &= t \\
\text{empty}[r_1 :] &= t
\end{align*}
\]

Berry-Sethi Approach: 2nd step

The set of read states, that may be reached from \(r \) (i.e. while descending into \(r \)) via sequences of \(\epsilon \)-transitions:

\[\text{first}[r] = \{ i \in r \mid (r, \epsilon, i \xrightarrow{\epsilon} x) \in \delta^*, x \neq \varepsilon \} \]

... for example:
Berry-Sethi Approach: 2nd step

The may-set of first reached read state: The set of read states, that may be reached from ϵ (i.e. while descending into r) via sequences of ϵ-transitions:

$\text{first}[r] = \{ i \in r \mid (\epsilon, \epsilon, i \rightarrow x) \in \delta^*, x \neq \epsilon \}$

... for example:

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of r_{ϵ} that may be reached next via sequences of ϵ-transitions:

$\text{next}[r] = \{ i \mid (r_{\epsilon}, \epsilon, i \rightarrow x) \in \delta^*, x \neq \epsilon \}$

... for example:
Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of \(r_e \), that may be reached next via sequences of \(\epsilon \)-transitions.

\[\text{next}[r] = \{ i \mid (r_e, \epsilon, \bullet r_i x) \in \delta^*, x \neq \epsilon \} \]

... for example:

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the subtrees right of \(r_e \), that may be reached next via sequences of \(\epsilon \)-transitions.

\[\text{next}[r] = \{ i \mid (r_e, \epsilon, \bullet r_i x) \in \delta^*, x \neq \epsilon \} \]

... for example:
Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which may be reached last during the traversal of r connected to the root via ϵ-transitions only:

$\text{last}[r] = \{ i \in r | (x \in \{\epsilon, r\} \in \delta^*, x \neq \epsilon) \}$

... for example:

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version): Create an automaton based on the syntax tree's new attributes:

- **States**: $\{ \ast \epsilon \} \cup \{ i \ast | i \text{ a leaf} \}$
- **Start state**: $\ast\epsilon$
- **Final states**: $\text{last}[\epsilon]$ if $\emptyset \\{\epsilon\} = f$
 - $\{\ast \epsilon \} \cup \text{last}[\epsilon]$ otherwise
- **Transitions**: $\{\ast \epsilon, a, i \ast \}$ if $i \in \text{first}[\epsilon]$ and i labeled with a.
 - $\{i \ast \ast, a \}$ if $i' \in \text{next}[i]$ and i' labeled with a.

We call the resulting automaton A_v.

Remarks:
- This construction is known as Berry-Sethi or Glushkov construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...
Chapter 4: Turning NFAs deterministic

Powerset Construction

... for example:

Powerset Construction

... for example:
For every non-deterministic automaton $A = (Q, \Sigma, \delta, I, F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Construction:

- **States:** Powersets of Q;
- **Start state:** I;
- **Final states:** $\{Q' \subseteq Q \mid Q' \cap F \neq \emptyset\}$;
- **Transitions:** $\delta_P \left(Q', a \right) = \{ q \in Q \mid \exists p \in Q' : (p, a, q) \in \delta \}$

Bummer!
There are exponentially many powersets of Q

- Idea: Consider only contributing powersets. Starting with the set $Q_P = \{ I \}$ we only add further states by need ...
- i.e., whenever we can reach them from a state in Q_P
- Even though, the resulting automaton can become enormously huge
 ... which is (sort of) not happening in practice

Therefore, in tools like `grep` a regular expression’s DFA is never created!
Instead, only the sets, directly necessary for interpreting the input are generated while processing the input
Powerset Construction

... for example:

```
  a b a b
```

Remarks:

- For an input sequence of length n, maximally $O(n)$ sets are generated.
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.