
Navigational Indices and Content Interlinkage On The Fly

Peter Ziewer
Institut für Informatik, I2

Technische Universität München, Germany
ziewer@in.tum.de

Abstract

Lecture recording provides learning material for
local and distance education. The TeleTeachingTool
uses the most flexible screen recording technique to
capture virtually any material displayed during a pres-
entation. With its built-in annotation system teachers
can add freehand notes and emphasize important
parts. Unlike other screen recorders, our implementa-
tion offers slide-based navigation, full text search and
annotated scripts, which is obtained by automated
post-production. This paper presents how to achieve
live access to any slide with corresponding annotations
created earlier during the presentation, although an-
notations are not associated with slides. For this the
post-processing algorithms must be adapted to work
on the fly while the presentation is still in progress and
an interlinkage between slides and annotations must be
achieved.

1. Introduction

Lecture Recording is conserving presentations for
later playback and provides additional learning mate-
rial, which can be created rather cheaply and quickly
and therefore is called lightweight content creation [1].
Lecture recorders based upon the screen recording
technique, like Camtasia (TechSmith Corporation) or
our TeleTeachingTool, digitally grab the content of the
presentation machine's desktop on a pixel basis and
therefore are very flexible as they can capture any ap-
plication (e.g. presentation software and browser) in-
cluding pointer movements, animations and annotations
(e.g. notes and sketches drawn with an electronic pen).
However, this flexible technique is criticized for omit-
ting document structures and textual content [2], which
provide useful and, as postulated by [1], necessary ad-
vanced playback features such as slide-based naviga-
tion and full text search. We have shown in [10] how to

regain document structure and achieve the required
features by automated analysis of the pixel-based re-
cordings. Thus we diminished the major drawback of
screen recorders when compared to recorders using
symbolic representation, e.g. Authoring on the Fly
(AOF) (University of Freiburg) or its commercial suc-
cessor Lecturnity (imc AG), which store structured
documents, but are rather limited in the choice of the
presentation software and supported document types.

Additionally we have introduced a simple but effec-
tive annotation system for the TeleTeachingTool to
enrich the learning material by adding freehand notes
and highlighting important elements during the presen-
tation [9]. Annotations are not bound to the presenta-
tion software, but are applied to the desktop as a whole,
which makes them usable for all applications. Unfortu-
nately, annotations will not be redisplayed if accessing
a slide that was annotated earlier during the presenta-
tion. Manually or automatically (as occurs when
switching to another slide) deleted annotations are lost
and cannot be replayed later (except for an instant
undo) because annotations are independent of the un-
derlying content and therefore are not associated with
slides. However, such association is asked for by [2].

In this work we will show how to achieve live ac-
cess to annotated slides by adapting the automated
analysis, originally designed for post-production only,
to be performed on the fly while the presentation is still
in progress, and how to interlink annotations not only
with indices but also with content (mainly representing
slides). Furthermore, we discuss how to replay earlier
annotated slides. We will start with a short overview of
the environment used and previously published re-
search results that are the basis for this work.

2. The TeleTeachingTool Environment

During our research we have implemented the
TeleTeachingTool (TTT), a freely available, cross-
platform lecture recording and broadcasting environ-

ment, which offers flexible screen recording (enhanced
with audio and video). It supports various operating
systems and allows the parallel use of arbitrary applica-
tions, including the teacher's choice of presentation
software, animations and browsers. The recorder can
be seamlessly integrated into an existing teaching envi-
ronment in a transparent way without influencing the
teacher [8]. Unlike other screen recorders, the TTT
offers slide-based navigation and full text search.

Furthermore, the TTT includes a simple but effec-
tive dynamic annotation system offering the possibility
of drawing freehand notes and sketches as well as em-
phasizing presentation content by highlighting or un-
derlining. All annotations are recorded and will be re-
played dynamically at the appropriate time during
playback. In conjunction with the built-in whiteboard,
which provides a plain page on demand, the freehand
drawing feature replaces the usage of common black-
boards or overhead projectors in order to be recorded
digitally. Figure 1 shows the TTT displaying an anno-
tated slide and thumbnails for slide-based navigation.

Figure 1. TeleTeachingTool

In order to digitally grab and record the teacher's
graphical desktop the TTT uses Virtual Network Com-
puting (VNC) [6], which is a remote display system,
that allows a graphical desktop environment to be con-
trolled from anywhere on the internet. The technology
underlying the VNC system is a simple protocol for
remote access to a graphical user interface, the Remote
Framebuffer (RFB) protocol [7]. It works at the frame-
buffer level and thus is totally independent of operat-
ing/windowing systems and applications. A frame-
buffer update message represents a change from one
valid framebuffer state to another and contains rectan-
gles of encoded pixel data to be placed at a given x,y
position. Recording is achieved by logging timestam-
ped RFB protocol messages for later playback [3, 4].
The TTT uses the timestamps to synchronize playback
with audio/video streams. The RFB messages received

from a VNC server are slightly adapted by the TTT to
enable direct access to rectangle headers and to facili-
tate the reading or skipping of complete messages dur-
ing post-processing and playback. Furthermore, addi-
tional message types are introduced to integrate annota-
tions. Further information, the TTT software and our
lecture archive are available at http://ttt.uni-trier.de.

3. Screen Recording: Flexible & Structured

The screen recording technique is known to be very
flexible as it can capture virtually any material dis-
played during a presentation, but unfortunately disre-
gards document structure and textual content needed
for slide-based navigation and full text search. Our core
idea to regain structure (described in [10]) is to auto-
matically create indices as access points to certain posi-
tions within the timeline of a recording, which allows it
to be subdivided and thereby structured. Meaningful
structuring is automatically gained by derived and side-
effect indices only. Manual structuring by placing in-
tentional or post-hoc indices is discouraged as this
would conflict with a lightweight production process. A
detailed index classification is given in [5, 4].

3.1. Slide and Animation Detection

Navigation by slide is one main feature a playback
engine should offer [2]. A slide is (mainly) an image
shown to the audience. In the case of a VNC-based
screen recorder, switching slides during a presentation
results in huge framebuffer update messages. The time-
stamps of updates, which cover a suitably large area of
the framebuffer, are potential indices for slide changes.
In contrast to the original update messages of the RFB
protocol the adapted messages used by the TTT offer
direct access to rectangle headers, which are needed to
calculate the affected area without parsing the complete
message. Rectangles belonging together are identified
by their identical timestamps. It is useful not only to
combine framebuffer updates assigned to exactly the
same timestamp, but also those included in a short pe-
riod because updates may be split and transmitted with
a short delay. Calculating the covered areas and com-
paring them with an empirically acquired threshold
delivers indices of possible slide changes.

The indices obtained by this method provide a parti-
tioning of the recording, but not all of those indices are
equally meaningful. A classification is obtained by ana-
lyzing the set of indices. Indices that are followed by a
further index after only a short delay may not be that
important. Analyzing not only the timeshifts between
indices but also the length of a sequence of indices with

small timeshifts allows indices to be classified, distin-
guishing between animations (long sequence) and
skipped slides (short sequence). The slide detection can
be further improved by using annotation events, espe-
cially the event that removes all current annotations,
which can be generated either manually by the teacher
or automatically by the TTT recorder based upon dedi-
cated key events used to switch slides (e.g. page up,
page down). Those events can help to distinguish slides
and animations, as animations typically are free of such
events, and can be used to gain a more fine grained
partitioning of slides whenever the teacher manually
clears previously made annotations within a slide.

During playback, slide indices are presented as
thumbnail overview and clicking on a certain preview
image causes an instantaneous playback of the corre-
sponding slide. Besides providing slide-based naviga-
tion, the indices are also used to automatically generate
screenshots to which optical character recognition is
applied in order to create a search base for full text
search and an HTML script containing linked screen-
shots. The generated script will, unlike published
slides, include the annotations made during the presen-
tation and makes them available to students.

3.2. Slide and Animation Detection On The Fly

The automated post-processing consists of 3 phases:
1. derive potential indices
2. classify indices
3. compute thumbnails / screenshots

The first phase, which computes the areas covered
by each framebuffer update, can be transferred to
online processing in a straightforward manner. As each
message must be parsed by the TTT recorder for re-
cording and transmission purposes anyway, each rec-
tangle header is read and the affected area can be cal-
culated. Combining updates of almost identical time-
stamps (as is done during post-processing) causes a
short delay of several hundred milliseconds only.

In the second phase the identified potential indices
are classified to determine a meaningful selection. The
offline classification algorithm analyzes sequences of
indices following each other in short time spans. How-
ever, if messages are received from a stream instead of
being available at the start, it is not always evident
where such sequences end. The empirically determined
properties of our current implementation distinguish
(supposed) animations after 30 seconds. A slightly de-
layed index computation is acceptable, because imme-
diate usage of newly created back references is not very
reasonable. They either refer to the currently displayed
slide or to one which was shown recently for a very

short time span only and hence cannot be very impor-
tant and will contain only a few, if any, annotations.

A sequence that ends within 30 seconds is assumed
to be caused by skipped slides, opening a new applica-
tion window or delayed messages due to heavy server
or network load and thus the last index is rated to be
valuable. A sequence is classified to be (part of) an
animation, if it exceeds the length of 30 seconds. An-
imations can last longer, but only the start point and
thus the first index is classified as important. As soon
as the algorithm assumes that an animation is in pro-
gress, it can drop any potential indices (exceeding the
area threshold) until the end of the animation is de-
tected by a decreasing rate of framebuffer updates.
Keeping in mind that we want to allow teachers to ac-
cess annotated slides during the presentation, it is
doubtful whether past animations should be accessible
at all. If not, animations are simply ignored. They could
also be treated as short sequences, meaning that the last
index in the sequence will be classified as suitable and
thus the final framebuffer at the end of an animation
with all annotations would be accessible. However, as
it is unsolved how to guess the content and intention of
an animation, it is not possible to determine if a suit-
able snapshot should be achieved at the entry point, the
end or any position somewhere in between.

A thumbnail overview (Figure 1) is a meaningful
representation of indices. It can be updated dynami-
cally whenever a new index is detected or an existing
one should be replaced due to a higher classified index.
As a perpetually changing index overview may confuse
the teacher, replacing should be reduced to a minimum.
This is achieved by delayed updating, which perfectly
fits with the delayed index detection described above.
However, the teacher might expect an instant feedback
whenever showing a new slide. Therefore a new
thumbnail is added immediately whenever the teacher
switches to the next slide, but any potential indices
appearing shortly afterwards are not displayed until
fully classified. This gives an immediate feedback dur-
ing an ordinary presentation (with an adequate amount
of time between slides), but does not confuse present-
ers due to bustling activity in the thumbnail index dur-
ing animations or while skipping slides. Similarly, an-
notations are gathered and added to the corresponding
thumbnail with a little delay, because there is no neces-
sity to display them immediately as they are also visible
in the main window and the teacher is obviously still
occupied with annotating the current slide. As the in-
tention is to access previously made annotations it is
advisable not only to index slide changes, but also to
make use of side-effect indices [4], caused by deleting
all annotations. As result each slide can have several

sets of annotations, which refer to different remarks of
the teacher and can be accessed individually.

In order to create thumbnails the post-processing al-
gorithm computes screenshots by fast replay of all up-
date messages and copying the framebuffer's content
for each timestamp that represents an index. The online
algorithm must store screenshots during index compu-
tation, because the framebuffer is modified by every
update and reclaiming its content demands the session
to be in memory and the usage of a second framebuffer,
which is inefficient. Therefore screenshots are stored
for each potential index and deleted if the index is re-
jected afterwards. To avoid performance problems
caused by storing many screenshots within a few sec-
onds, it is advisable not to store a screenshot immedi-
ately after receiving a potential index, but to wait until
the next framebuffer message arrives. This offers the
possibility of observing the next header, which may
reveal that the new message should be included in the
screenshot due to an identical timestamp, or alterna-
tively may result in the generation of a more suitable
index to replace the current one. However, as an update
can contain several rectangles but the RFB protocol
does not allow access to rectangle headers without
parsing all preceding rectangles, either only the first
rectangle can be observed or rectangles must be parsed
and buffered but not immediately displayed. Screenshot
generation is reduced further whenever the detection
algorithm has identified the currently read sequence as
an animation and thus all potential indices can be ig-
nored until the end of the sequence is determined.

3.3 Live Replay

During offline playback a recorded presentation is
replayed dynamically in the same way as it was pre-
sented in the lecture hall including the teacher's verbal
narration. The narration is obviously not needed if ac-
cessing a previous index during a live lecture. Dynamic
replay of recorded application usage may be meaning-
ful to show the behavior of an application again. How-
ever, in most cases it is likely to be easier and less con-
fusing to rerun the application once more instead of
replaying the recorded version, because replaying does
not allow interaction with the recorded applications and
the index might not refer exactly to the position the
teacher had in mind. Additionally, if accessing an anno-
tated slide, teachers expect annotation to be displayed
instantaneously rather than to appear after a while. Fur-
thermore, dynamic replay demands to keep the whole
recorded session in memory, because reading from a
file while still recording to it is error-prone and also the
replay itself must be recorded again.

In order to represent earlier annotated slides the
much easier approach of displaying static screenshots is
more suitable. Even editing TTT annotations is possi-
ble, because they are handled on a separate layer. Re-
garding the results of the classification algorithm al-
lows annotated screenshots to be shown if indices are
classified as slides, and the dynamic replay of anima-
tions or other content elsewise.

4. Interlinkage of Annotations and Slides

TTT annotations are not bound to the presentation
software but are applied to the desktop as a whole and
hence are applicable to any kind of application. On the
other hand, [2] postulates annotations should be associ-
ated with slides so that annotations disappear when a
slide is changed and made visible again when returning
to that slide later during presentation. The first aspect is
solved by applying automated removal of annotations
triggered by the keys commonly used to switch slides.

Annotations can be linked to indices according to
their timestamps. An interlinkage to indices (or any
other timestamps) can be achieved by aggregating all
annotations in the period between two subsequent indi-
ces (or a timestamp and the next event that deletes an-
notations). In the offline case this approach is suitable
to gain annotations that are valid at keyframes and to
create annotated screenshots during the automated
HTML script generation process. On the fly interlink-
age of annotations and already computed indices is
easily achieved by buffering annotation events. Access-
ing a slide via thumbnail overview redisplays previ-
ously made annotations. However, this is only a loose
interlinkage, because indices are only referencing slide
changes without any knowledge of slide content. A
slide shown twice during presentation causes two inde-
pendent slide indices. A real association between anno-
tations and slides (or any other application's contents)
would even allow recalling corresponding annotations
when skipping back to previously annotated slides
within the presentation software.

4.1. Content Interlinkage

In order to achieve real interlinkage it is necessary
to determine if the currently displayed framebuffer
matches any previously shown content. Comparing the
current framebuffer with all previous states is not ap-
plicable as every update message modifies the frame-
buffer content and a session of 90 min. comprises of
several thousand updates. However, only grave modifi-
cations are important such as switching to another slide
or opening a new application. But those are identified

by the indexing algorithm and typically limited to sev-
eral dozen occurrences. Therefore framebuffer com-
parisons are only needed whenever a received update
message is identified as a potential index and the num-
ber of comparison partners is limited to the already
identified indices. Detecting exact matches using
checksums (such as CRC32) is a relatively easy task.
Different checksums unfold different framebuffers and,
if chosen suitably, matching checksums should point to
equal content at high probability.

Unfortunately, such comparison will be problematic
unless contents match perfectly, which is not necessar-
ily the case. Sources of inaccuracy are animated ban-
ners of web pages or a clock displayed within an appli-
cation or the task bar. Also the frequently changing
pointer position is a disruptive factor (if part of the
framebuffer and not treated separately by VNC).
TTT's own annotations are stored on a separate layer,
but annotations generated by any presentation software
influence the framebuffer as well. Therefore only a
high degree of covering instead of a perfect match
should be used as the comparison factor. Examinations
of the computer science course Informatik III (Winter
2005/06) of Prof. Schlichter (25 recordings of approx.
90 min.), revealed a threshold of 1.1% differing pixels
as suitable to determine identity of slides. Applying the
same threshold to recordings of the courses Compiler-
bau and Abstrakte Maschinen (both Summer 2006) of
Prof. Seidl showed less perfect matches due to the
heavy usage of slide overlays during the presentations.
Such overlays are very similar as they partly contain
the same content, but nevertheless should be distin-
guished. Lowering the threshold to a value below 0.2%
eliminated the problem. Surveying several other re-
cordings confirmed the lower threshold to be suitable
for most lectures. However the detection rate for the
lectures of Prof. Schlichter is remarkably better when
the higher value is applied due to the presentation envi-
ronment used, which is not any designated presentation
software but rather a web browser showing HTML-
based slides. Navigation is done via links and followed
links are displayed in another color, which is the reason
for the higher number of differing pixel values. Until
further research exposes an adaptive threshold compu-
tation, a preset suitable for most cases but adjustable
for special occurrences is practicable. At least a thresh-
old stays valid for a certain presentation style and thus
have to be designated only once per teacher or lecture
series. Lowering the color depth before performing
comparisons can also reduce irritations.

Pixel-based comparison of several framebuffer con-
tents is not very efficient due to the heavy memory us-
age and the high number of comparison operations re-

quired. However the number of effective pixel values is
very limited as for most slides approximately 95% are
background color (assuming a single colored back-
ground; see Figure 2). Even very complex slides rarely
contain over 35% of pixels not colored as background.
This leads to very high compression rates even for sim-
ple and therefore fast compression schemes such as
run-length-encoding. As the vast majority of compari-
son partners represent unequal slides, the comparison
algorithm should detect and reject them as fast as pos-
sible, at best by a single value comparison. Examina-
tion of several dozen recordings exposed the number of
background pixels to be a suitable criterion. Slides
cannot match each other if the difference in back-
ground pixels exceeds the previously mentioned
thresholds of 0.2% or 1.1%, because differing back-
ground pixels are a subset of all differing pixels. The
complete comparison of all pixel values must be car-
ried out only if the number of background pixels almost
matches. Note that quick rejection fails if color cycling
or background images are used instead of a solid back-
ground, but their usage for TTT/VNC is discouraged
due to bad compression ratio anyway.

Constructing a color histogram to identify the back-
ground color and to count pixels requires each pixel to
be accessed once, but that is also the case for any other
comparison algorithm. At least it can be combined with
constructing additional data structures to perform an
efficient pixel comparison, if needed. However, the
main case of comparing non-matching framebuffer
contents can be achieved in a time of O(framebuffer
width x height) to create the histogram plus a negligible
number of indices single value comparisons instead of
O(number of indices x width x height) pixel compari-
sons. Another approach could be a similarity hash, but
a suitable hash function needs to be ascertained first.

4.2 Content Prediction by Color Histograms

Through the examination of the background color of
recorded lectures we have detected that the color histo-
gram exposes information about the framebuffer con-
tent. For simple slides over 90% of the pixels are in
background color, but more complex slides achieve
values of approximately 55-85%. A desktop with a
taskbar, icons and windows results in a coverage of 30-
50% in the most frequently used color and if no color
covers more than 5% of the pixel values, the frame-
buffer represents a fullscreen video or high colored
picture. Surveying the second most frequently used
color of complex slides reveals that a value of more
than 10% indicates a table or diagram, but lower values
most probably point to a slide containing a high col-

ored picture (e.g. a photo). Figure 2 displays the analy-
sis of one exemplary recording (Informatik II,
04/15/2005 by Prof. Seidl). It shows how much of the
framebuffer is covered by the most frequently used
color for each index. During the corresponding lecture
the desktop with some windows was visible at the be-
ginning (up to index no. 13) and the end (no. 50-54).
The middle part consisted of a slide presentation and
some slides contained images (no. 19, 20, 23, 40 and
41). Index no. 24 was a plain whiteboard page and thus
resulted in 100% background pixels. Note that all men-
tioned recordings are available at our lecture archive.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1 11 21 31 41 51

Figure 2. Background coverage

5. Conclusion

Screen recording offers a flexible technique for lec-
ture recording as it allows virtually any material dis-
played during a presentation to be captured. Automated
analysis compensates for many drawbacks caused by
the missing structure or symbolic representation of con-
tent. Our TeleTeachingTool is a VNC-based screen
recorder, which offers automated slide detection to
generate useful navigational indices. The post-
processing algorithm was transferred to on the fly us-
age to achieve live access to previously annotated
slides, which is requested as useful feature by [2]. By
comparing framebuffer contents, annotations can even
be linked to slides (or other framebuffer content). The
process can be further improved by developing an
adaptive threshold computation in future.

The easy to use navigation via a graphical overview
of slide indices, which was previously available for
later playback only, can also be adapted for online us-
age while presentation is in progress. The thumbnails
(representing indices) and annotations are updated as
required by the index detection, but with a short delay,
which is sufficient to avoid irritations resulting from a
permanently changing thumbnail overview. As we as-
sume that full text search is rarely used during live
presentation, and because optical character recognition
is a complex task, this feature remains for post-
production and playback usage.

An examination of the background color of recorded
lectures has revealed that color histograms give infor-
mation about content, but more research is needed to
achieve suitable thresholds for content prediction and
to integrate appropriate search and navigational fea-
tures in a reasonable way. Furthermore, analyzes of
dynamical content should be improved.

References

[1] P.-Th. Kandzia, G. Kraus, and Th. Ottmann, "Der Uni-
versitäre Lehrverbund Informatik - eine Bilanz", Software-
technik-Trends 24:1, Gesellschaft für Informatik, Feb. 2004,
pp. 54-61.

[2] T. Lauer, and Th. Ottmann, "Means and Methods in
Automatic Courseware Production: Experience and Techni-
cal Challenges", World Conference on E-Learning (E-
Learn'02), Montreal, Canada, Oct. 2002.

[3] S. Li, Q. Stafford-Fraser, and A. Hopper, "Frame-buffer
on demand: Applications of stateless client systems in web-
based learning", 5th Int. Conference on Information Systems
Analysis and Synthesis (ISAS'99), Orlando, FL., 1999.

[4] S. Li, M. Spiteri, J. Bates, and A. Hopper, "Capturing and
Indexing Computer-based Activities With Virtual Network
Computing", ACM Symposium on Applied Computing,
Como, Italy, 2000, (2), pp. 601-603.

[5] S. Minneman, S. Harrison, B. Janssen, G. Kurtenbach, T.
Moran, I. Smith, and W. van Melle, "A Confederation of
Tools for Capturing and Accessing Collaborative Activity",
ACM Multimedia'95, San Francisco, CA, Nov. 1995, pp.
523-534.

[6] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hop-
per, "Virtual Network Computing", IEEE Internet Comput-
ing, 1998, 2 (1), pp. 33-38.

[7] T. Richardson, "The RFB protocol. Version 3.8.",
http://www.realvnc.com/docs/rfbproto.pdf, RealVNC Ltd.,
July 2005.

[8] P. Ziewer, and H. Seidl, "Transparent Teleteaching",
19th Annual Conference of the Australasian Society for
Computers in Learning in Tertiary Education (ASCILITE),
Auckland, New Zealand, Dec. 2002, (2), pp. 749-758.

[9] P. Ziewer, and H. Seidl, "Annotiertes Lecture Recor-
ding", 2. e-Learning Fachtagung Informatik (DeLFI'04),
Gesellschaft für Informatik, Paderborn, Germany, Sep. 2004,
pp. 43-54.

[10] P. Ziewer, "Navigational Indices and Full Text Search
by Automated Analyses of Screen Recorded Data", World
Conference on E-Learning (E-Learn'04), Washington, D.C.,
Dec. 2004.

